Уже который год со всех телевизоров, радиоприемников и интернетов непрерывно несут о "технологиях, которые перевернут мир", о том, что "ДВС скоро уйдет в историю", что "открыты новые виды энергии". А сегодня, когда я услышал, что в Советском Союзе были электрокары на базе копейки (уже тогда, давно-давно были, но в массы они так и не вышли), это натолкнуло меня на мысли, что всё неспроста, и всемирный заговор, который прослеживается почти во всех моих постах, имел место быть и здесь. Но обо всём по порядку.
Всем давно известно, что КПД бензинового двигателя редко достигает 40%, а чаще топчется у отметки в 10-30%. При том двигатели внутреннего сгорания (ДВС), имеют весьма сложную организацию, трудно ремонтируются, требуют множество различных металлов и пр.
Дизельные двигатели имеют более высокий КПД и некоторые модели уже подобрались к 50%, используя турбины, передовые системы охлаждения. Малолитражные дизели имеют КПД, примерно такой же, как и бензиновые.
Электродвигатели, как всегда, впереди всех, с КПД в 96-97%.
Другими словами, 60% (больше половины, если мерить в половинах) бензина, который вы заливаете, уходит не на движение, динамику и т.п., а тупо к карман владельца колонки. Беда, правда?
Альтернативы, скажете, нет: не будешь же возить 700кг аккумуляторов, чтобы заряжать каждый день. Да и зимой с ними туговато выходит. Да и электричество ценами кусается.
Тут-то и хочется вспомнить о топливном заговоре, нефтяной игле и прочих недоказуемых вещах, которые хоть и незаметны, но влияют на нас с вами непосредственно. Неужели, традиционный ДВС заменить нечем? Конечно, есть. И речь идёт не о новомодных водородных и гелеевых двигателях. Всё новое — хорошо забытое старое.
Итак, решил поискать информацию об электрокопейках, передовых технологиях АвтоВАЗа, но нашёл кое-что поинтереснее.
Давно слышал, что были почти мистические машины в нашей стране, которые не уступали по динамике разгона и потолку максимальной скорости самым мощным иномаркам тех времён. Думал, что это специально выдуманные легенды работниками ВАЗа, чтобы прикрыть свою криворукость и неспособность создать хоть сколько-нибудь авангардное в мире машин. Я ошибся. Действительно, были такие у нас такие машины. Выпускались. И копейки были ракетные, и восьмёрки: Двигатель в 1.3л обходил по всем параметрам агрегаты компании Мерседес в 3.2л. А вот теперь перейдём к самому интересному. Что же у них было под капотом? Дизель? Нет, хоть и дизельные двигатели на АвтоВАЗе тоже были.
Там был ротор. Да-да, роторный двигатель, подобный тому, что ставится на Rx-8, таскал созданные на Волжском заводе тазики. Говорят, что и сейчас можно поставить на наши машинки такие агрегаты.
Так чем роторный двигатель лучше обычного? я бы на первое место поставил простоту. Минимальное число деталей роторного двигателя — 7. К примеру, из семи деталей состоит только поршень с шатуном.
Второе — такой двигатель можно крутить на 10-15тыс оборотов.
Крутящий момент — третье — стабильно высок и равен почти на всех оборотах.
Четвёртое — мгновенный разгон. Вышеупомянутая восьмерка разгонялась до сотни за 7.5с.
Недостаточно?
А вот вам козырь: этот двигатель можно кормить всем, что горит: бензин — хоть 76, хоть 98, хоть спирт, хоть (до последнего не верится) — дизель.
Как же эта чудо-штука работает?
Всё гениальное — просто. Посмотреть можно здесь: www.autoreview.ru/new_sit…les/2001/27_11/200/00.gif
Ротор вращается благодаря привычному всем сгоранию бензина. Тот взрывом двигает "овальный треугольник", который другой стороной создаёт вакуум, затягивая горючую смесь. Дальше свеча вновь делает своё дело и всё начинается заново. Замечу, что свеча может быть и одна, тогда, по схеме, остаётся всего 4 детали;)
Вспомним, что происходит в бензиновом двигателе, который ставится на наши машинки. Анимация здесь: k38.kn3.net/BB6B9FB18.gif
Занятно, правда?
А всё началось с далёкого 1957г, когда его придумал немецкий инженер Феликс Ванкель.
Он первым использовал вместо поршня специальный ротор треугольного сечения, грани которого, скользя по поверхности цилиндра, отсекают переменные объемы камер. За один полный оборот ротор проходит четыре такта обычного двигателя. Такие моторы использовались немецкой компанией NSU, купленной впоследствии Audi, и французским «Ситроеном». Впрочем, ни немцы, ни французы дальше одной роторной модели не пошли: двигатели Ванкеля были отнюдь не экономичными, а в мире тогда случился топливный кризис. Немецкого инженера все забыли, кроме японской корпорации Mazda, которая выпускала роторные RX — в том числе и для того, чтобы поставить на место зарвавшееся правительство, пожелавшее в то время унифицировать всю автопромышленность. Прижились новые моторы и в СССР: спецслужбы сразу оценили потенциал нового движка. О них, собственно, и ходили слухи.
Основная причина в том, что они почти не используются в том, (как говорят), что они часто ломаются. Вроде бы, и ломаться-то нечему, а ломаются, причём раз и навсегда — они неремонтопригодны. А что там ремонтировать-то, спрашивается, если деталей-то не больше 10 штук?)) Если поставить на поток, двигатели можно вообще менять в сборе. Модульно.
Да, они могут показаться не такими экономичными (до 15л на 100км), но какие сто километров!
К тому же, прогресс не стоит на месте. Российские Кулибины непрерывно совершенствуют эти чудо-машины, причём без всякой поддержки извне.
Некоторые добились огромных результатов:
И становится очень страшно, если эти разработки снова утекут за рубеж.
Скажем, вот этот двигатель Ахриевых — практически не имеет вибраций и очень экономичен.
Двигатель Исаевых — имеет большую эффективность и экономичность за счёт высокого сжатия.
Каким бы мы увидели мир, если бы сделали ставку на такие двигатели?
Недавно где-то слышал по ТВ, у какой-то шишки в салоне электрокаров спросили, когда ДВС уйдёт в историю? тот засмеялся и выдал: "Никогда".
Журналист сконфузившись, еле пробубнил: "А если закончится нефть?"
— Не закончится, а просто станет ещё дороже.
"Просто станет ещё дороже", друзья. ПРОСТО дороже. Скоро будем выгуливать своих стальных питомцев только по праздникам, а после — только любоваться ими в гараже, очередной раз накладывая слой полировки на свои машинки.
В прочем, вот и конец этой небольшой истории. Кто знает, может всё переменится.
газогенераторная установка/gas-producing setting
Нынешние цены на бензин заставляют активно искать альтернативу этому виду горючего. И если о массовом переходе на водород или топливные элементы пока говорить рано (в силу дороговизны и сложности подобных устройств), то замена бензина дровами – технология уже известная. Но оправданна ли она? Оборудовав ГАЗ-52 самодельной газогенераторной установкой, группа инженеров Житомирского агроэкологического университета не изобрела… Читать далее »
Модель двигателя на постоянных магнитах. / Engine model based on permanent magnets.
Модель двигателя на постоянных магнитах. Гуляя просторами интернета я обратил внимание на странные споры вокруг так называемых вечных двигателей, причем основная часть авторов сайтов и комментаторов осациируют вечный двигатель с генераторами энергии, принцип работы которых основан на взаимодействии постоянных магнитов (двигателя на постоянных магнитах). Мое личное мнение – нет, и не может быть ничего… Читать далее »
Двигатель работающий на воздухе / The engine runs on air
Воздушный двигатель Идея этого альтернативного воздушного двигателясовершенно проста и не нова, основана на принципе работы простейшего парового двигателя. Напомню в краце, там для получения полезной энергии используется вода, которая вследствие нагревания превращается в пар, результатом чего является повышение давления. Затем этот пар (под высоким давлением) передается на турбину (или поршнь), с которой по средствам вала или редуктора… Читать далее »
Двигатель Шаубергера своими руками
Двигатель Шаубергера своими руками В настоящее время двигатель Шаубергера пользуется большой популярностью и рассматривается как альтернативный двигатель. Что представляет собой подобное устройство, и в чем его преимущества. Как создать двигатель Шаубергера своими руками? Австрийский инженер Виктор Шаубергер работал над созданием электрогенератора, в котором турбина отличалась от конструкций обыкновенных водяных электростанций. Идея двигателя Шаубергера… Читать далее »
Гидростатический двигатель
Гидростатический двигатель Уважаемые участники сайта, позвольте предложить Вам тему связанную с альтернативной энергетикой — гидростатический двигатель. Возникла идея построить действующий гидростатический двигатель (описание и принцип действия для понимания сути идеи выложу ниже), но нужен взгляд со стороны и желательно не один, и критические замечания. Также нужны расчеты движущего элемента и маховика — для примера,… Читать далее »
Водородный генератор для автомобиля
Водородный генератор-это вид оборудования, при правильной установке которого можно снизить расхода топлива мотоцикла, легкового или грузового автомобиля, а также сократить количество вредных выбросов в атмосферу. При помощи батареи питания и генератора постоянного тока вода разлагается на кислород и водородный газ (HHO), который попадает в двигатель и потом выделяется в атмосферу. HHO улучшает качество сгорания топлива… Читать далее »
Генератор Адамса «Вега». Что это?
Генератор Адамса относится к классу безтопливных самовосстанавливающихся зарядных устройств. Самым главным преимуществом данного устройства является абсолютная независимость от погодных условий (ветрогенераторам нужна постоянная и, желательно, сильная ветреная погода, а генераторы на солнечных элементах весьма критичны к яркости солнечного освещения и в ночное время обычно не работают). Конструкция генератора Адамса «Вега»: Конструкция генератора Адамса (как и перечисленных выше ветрогенератора и… Читать далее »
Двигатель Шаубергера своими руками
В настоящее время двигатель Шаубергера пользуется большой популярностью и рассматривается как альтернативный двигатель. Что представляет собой подобное устройство, и в чем его преимущества. Как создать двигатель Шаубергера своими руками? Австрийский инженер Виктор Шаубергер работал над созданием электрогенератора, в котором турбина отличалась от конструкций обыкновенных водяных электростанций. Идея двигателя Шаубергера заключалась в создании вихря внутри камеры,… Читать далее »
Авторы необычных моторов, как правило, сулят революцию. Однако даже когда у крупных компаний есть возможность начать с чистого листа, они отчего-то ставят на конвейер классические поршневые ДВС. Один из последних примеров — семейство двигателей Ingenium компании JLR.
Двигатели Ванкеля, Стирлинга, разного рода газотурбинные установки так и не стали автомобильным мейнстримом. Ряд известных компаний (от Мазды до GM, от Мерседеса до Volvo) работали над ними десятки лет, упорствовали маленькие фирмы и отдельные изобретатели. Увы, в конце концов выяснялось, что подводных камней в той или иной конструкции намного больше, чем казалось вначале. Но это не значит, что развитие альтернативных агрегатов невозможно. Энтузиасты перебирают идею за идеей, и мне как инженеру-двигателисту интересно поделиться с вами рядом экзотических схем.
Некоторые создатели перспективных двигателей решили, что комбинация из цилиндра, поршня, шатуна и коленвала отлично себя зарекомендовала более чем за столетие и, чтобы улучшить параметры ДВС, не надо изобретать её заново — достаточно лишь подправить кое-какие аспекты. Поэтому первый в нашем обзоре — мотор американской компании Scuderi Group, который имеет классические такты впуска, сжатия, рабочего хода и выпуска, но происходят они не в одном и том же цилиндре, а в разных. Так называемый холодный цилиндр отвечает за впуск и сжатие, а второй, горячий — за рабочий ход и выпуск.
Экспериментальный литровый мотор Scuderi на стенде работает плавно и относительно тихо — даже без глушителя!
По расчётам мотор Scuderi на 25% экономичнее обычного, а с турбонаддувом и теплообменником, передающим энергию выхлопных газов воздуху в перепускном канале, и того выше. В четырёхцилиндровом варианте один компрессорный цилиндр может загонять смесь в три рабочих.
Если к каналу между цилиндрами добавить ответвление с клапанами и баллоном высокого давления, можно заставить такой мотор собирать энергию при торможении и использовать её при разгоне (этот режим показан на последней минуте первого ролика). Однако на протяжении уже ряда лет деятельность компании Scuderi Group ограничивается лишь опытными образцами и участием в выставках. Похоже, реальная экономичность тут всё же не может перебить высокую сложность конструкции.
Двухтактный агрегат Paut Motor использует принцип, подобный применённому в моторах Scuderi Group, — сжатие и рабочий ход тут происходят в разных цилиндрах, между которыми устроены перепускные каналы.
К разделённому рабочему циклу обратились было и разработчики хорватской фирмы Paut Motor. Их «разнесённая» конструкция привлекла меньшим числом деталей, низким трением и сниженным шумом. А необходимость внешнего бака для системы смазки, вызванная тем, что в картере масла не предусмотрено, не испугала. Изобретатели построили несколько опытных образцов. Для рабочего объёма в семь литров их габариты (500×440×440 мм) и вес (135 кг) оказались чуть ли не вдвое ниже, чем у традиционных ДВС. А отдачу так и не выяснили. Последний прототип был собран в 2011 году, а затем проект заглох.
Ключевое отличие от схемы фирмы Paut Motor — роль рабочих поршней играют подвижные цилиндры, соединённые с коленвалом (показаны красным). А с внешней стороны их закрывают неподвижные поршни (отмечены серым).
За газораспределение в Боннере отвечают клапаны в донышках цилиндров и вращающиеся золотники в корпусе мотора. При этом внешние поршни могут немного смещаться под давлением масла, обеспечивая переменную степень сжатия. Запутанная схема! А всё — ради высокой мощности на единицу веса. В теории Bonner выглядит интересно, но на практике о нём уже давно нет никаких новостей — судя по всему, надежд он не оправдал.
Некий мистер Смоллбон получил американский патент на аксиальный мотор ещё в 1906 году. Но если бы такой агрегат был идеалом, через 110 лет все автомобили использовали бы его.
Другие изобретатели не меняли рабочие циклы ДВС, а сосредотачивались на расположении его частей. Таковы, например, аксиальные моторы, которым уже больше ста лет (один из ранних патентов — на рисунке выше). Все они отличаются деталями, но объединены общим принципом — цилиндры располагаются, как патроны в барабане револьвера, с соосным выходным валом. За преобразование возвратно-поступательных движений поршней во вращение вала отвечают разные системы вроде наклонённых к продольной оси двигателя штифтов, косых шайб и тому подобного.
По такому принципу сегодня работают некоторые компрессоры. Добавив продуманное газораспределение и зажигание, можно превратить подобный блок в мотор.
Опытный образец мотора Duke был построен в 2012 году. Потом он мелькал на выставках, собирал призы, но вот уже несколько лет новостей о нём нет.
Ещё более сложный аксиальный пример — двигатель RadMax канадской фирмы Reg Technologies. Здесь вместо цилиндров в общем барабане с помощью тонких лопастей организована дюжина отсеков. В прорезях ротора установлены пластины, которые сдвигаются вдоль них по мере его вращения. С торцов полученные переменные объёмы ограничивают изогнутые поверхности: они задают траекторию движения лопастей и заведуют газообменом.
Основные части мотора RadMax. За один оборот вала тут происходит 24 полных рабочих цикла.
Схема RadMax позволяет создавать двигатели под разные виды топлива, хотя изначально изобретатели выбрали дизельное. В 2003 году был построен образец диаметром и длиной всего 152 мм. Он развивал 42 силы — в разы больше, чем схожий по габаритам ДВС. Позже фирма отчиталась о создании более крупных прототипов на 127 и 380 сил. Но, судя по релизам, вся её деятельность по-прежнему не выходит за рамки экспериментов.
Ещё один пример превосходства теории над практикой — тороидальный мотор Round Engine (или VGT Engine) уже исчезнувшей канадской компании VGT Technologies. Первые прототипы двигателя с тором переменной геометрии (отсюда и буквы VGT — Variable Geometry Toroidal Engine) инженеры испытывали ещё в 2005 году.
Авторы кругового двигателя избавились от возвратно-поступательных движений. Отсюда — радикальное снижение вибраций. Плюсом можно назвать минимальное число деталей и хорошую расчётную экономичность.
Тор здесь играет роль цилиндра, внутри которого вращается ротор с парой закреплённых на нём поршней. Необходимые для обеспечения рабочих тактов переменные объёмы образуются между поршнями с помощью тонкого распределительного диска с вырезом под поршни, который ремённым или иным приводом вращается поперёк тора. Этот диск ограничивает топливно-воздушную смесь в процессе сжатия и рабочего хода.