No Image

Датчик температуры что это

СОДЕРЖАНИЕ
2 769 просмотров
21 января 2020

Датчики температуры нужны для того, чтобы проконтролировать температуру в помещении, жидкости, твердого объекта или расплавленного металла.

Основой действия температурных датчиков в автоматизированном управлении является изменение температуры в электрический сигнал. Это обуславливает преимущества электрических измерений: результаты легко передавать по сети, скорость передачи может быть достаточно высокой. Величины могут преобразовываться друг в друга и обратно. Цифровой код создает повышенную точность замера, скорость и чувствительность.

Виды и принцип действия

Термопары

Термопара представляет собой две проволоки из разных металлов, спаянных между собой. При разности температур между горячим и холодным концом в цепи возникает электрический ток. Величина этого электрического тока зависит от термоэлектрической силы термопары, составляет от 40 до 60 мкВ, в зависимости от материала термопары. Материал термопары может быть разным. Это могут быть никель-хромовые, хромо-алюминиевые, железо-никелевые, железо-константановые и т.д.

Термопара является высокоточным датчиком температуры, однако эту точность достаточно проблематично снять. Термопара является относительным датчиком температуры, уровень ее напряжения имеет зависимость от температурной разности между спаями. При этом холодный спай находится при комнатной температуре или при какой-либо другой.

Рассмотрим работу термопары ближе. Есть две термопары и две температуры горячего и холодного конца. Соответственно ЭДС зависит от разности температур. Температуру холодного спая необходимо компенсировать. Аппаратным способом компенсации является использование второй термопары, которая помещена в заранее известную температуру.

Программным способом компенсации является использование другого датчика температуры, на этот раз абсолютного, который помещается в изотермическую камеру вместе с холодными спаями и контролирует их температуру с заданной точностью. Имеются трудности снятия данных с термопары.

Во-первых , она нелинейная. В ГОСТе заботливо введены коэффициенты полинома для перевода ЭДС в температуру и обратно. Эти полиномы большого порядка, но ничто не запрещает спокойно их посчитать силами контроллера.

Во-вторых , другая проблема заключается в том, что термо-ЭДС термопары измеряется в единицах и сотнях микровольт. Соответственно, использование широко доступных аналогоцифровых преобразователей приведет к полному провалу. Нужны прецизионные многоразрядные малошумящие аналогоцифровые преобразователи для того, чтобы использовать термопару в своих конструкциях.

Терморезисторы

Гораздо более простым способом измерения стало применение терморезисторов. Они работают на зависимости сопротивления материалов от внешней температуры. Металлические термометры сопротивления, в частности платиновые обладают очень высокой точностью и линейностью. Термометры сопротивления определяются двумя основными характеристиками.

Это базовое сопротивление термометра при определенной температуре. В ГОСТе базовым сопротивлением считается сопротивление при 0 градусах по Цельсию. ГОСТ рекомендует использование нескольких номиналов сопротивлений в Омах и температурный коэффициент, который определяется как разность сопротивлений нашей температуры и при 0 градусов, деленной на нашу температуру и t нуля градусов, умноженную на единицу, деленную на базовое сопротивление.

Ткс = (Re – R0c) / (Te – T0c) *1/R0c

В ГОСТе на терморезисторы вы найдете температурный коэффициент для различных термометров из платины, меди и никеля. Кроме того, там присутствуют коэффициенты полинома для расчета температуры из текущего сопротивления резистора. Одной из проблем термометров сопротивления является очень низкий температурный коэффициент сопротивления. Однако, измерять сопротивление с высокой точностью гораздо проще, чем очень малые значения напряжения в отличие от термопар.

Одним из способов измерения сопротивления является включение нашего термосопротивления в цепь источника тока и измерение дифференциального напряжения. Использование полупроводников даст нам температурный коэффициент доли единицы процента, их гораздо проще измерять с помощью аналогоцифровых преобразователей. Есть интегральные микросхемы датчиков температуры, аналоговый выход которых уже соответствует питаемому напряжению. Такие датчики температуры можно напрямую подключать к аналогоцифровому преобразователю и спокойно оцифровывать его с помощью восьми- или десятибитного АЦП.

Комбинированный датчик

Помимо интегральных схем с выходом, существуют датчики с цифровым интерфейсом. Одним из популярных датчиков является комбинированный датчик температуры и влажности серии SHT1. Этот датчик позволяет измерять температуру с точностью + 2 градуса и влажность с точностью + 5 градусов. Главной проблемой данного датчика температуры является то, что там решили оптимизировать интерфейс. Он позволяет подключать параллельные устройства.

Цифровой датчик

Цифровой датчик температуры DS18B20, который представляет собой трехвыводную микросхему, позволяет с высокой точностью до 0,5 градуса получать температуру с множеством параллельно работающих датчиков. В этом датчике широкий интервал температур от -55 до +125 градусов. Основной его недостаток – медлительность. Вычисления с максимальной точностью он делает за 750 мс. Ввиду инерционности корпуса датчика температуры опрашивать его нет никакого смысла.

Бесконтактные датчики (пирометры)

В этом датчике имеется специальная тонкая пленка, поглощающая инфракрасные излучения, тем самым нагревающаяся. Такие бесконтактные термосенсоры используются в тепловизорах. Там имеется не один тепловой датчик, а матрица. Они позволяют на расстоянии до 3 метров детектировать тепловой объект.

Читайте также:  Суппорт тормозной передний тойота
Кварцевые преобразователи температуры

Для того, чтобы измерить температуру в интервале -80 +250 градусов применяют кварцевые преобразователи. Они работают на частотной зависимости кварца от температуры. Действие датчиков происходит на частотной зависимости. Функция преобразователя меняется от расположения среза по осям кристалла.

Кварцевые датчики работают с высокой чувствительностью, разрешением, стабильностью. Эти свойства делают их перспективными в использовании. Они получили большое распространение в цифровых термометрах.

Шумовые датчики температуры

Работа шумовых датчиков заключается на зависимости шумовой разности потенциалов на резисторе от температуры. Практически реализовать способ измерения температуры шумовыми датчиками можно, сделав сравнение шумов 2-х одинаковых резисторов, один находится при определенной температуре, 2-й при измеряемой температуре. Шумовые датчики температуры применяются для температурного интервала -270 -1100 градусов.

Преимуществом шумовых датчиков стала возможность измерения температуры в термодинамике на вышеописанной закономерности. Но это осложнено трудным измерением напряжения шума, так как оно мало и сравнимо с шумом усилителя.

Датчики температуры ЯКР (ядерного квадрупольного резонанса)

Термометры ЯКР работают за счет действия градиента поля тока решетки кристалла и момента ядра, которое вызвано отклонением заряда от симметрии сферы. Это создает процессию ядер. Частота имеет зависимость от градиента поля решетки. Для разных веществ имеет величину до тысяч МГц. Градиент зависит от температуры, с ее возрастанием частота ЯКР уменьшается.

Датчики температуры ЯКР образуют ампулу с веществом, помещенную в обмотку индуктивности, которая соединена с контуром генератора. Когда частота генератора совпадает с частотой ЯКР, то энергия генератора поглощается. Допуск замера температуры -263 градуса равен + 0,02 градуса, а температуры 27 градусов +0,002 градуса. Преимуществом термометров ЯКР становится стабильность, неограниченная по времени, недостатком является значительная нелинейность преобразующей функции.

Объемные преобразователи

Объемные датчики действуют на расширении и сжатии веществ при изменении температуры. Диапазон действия преобразователей определяется, насколько стабильны свойства материалов. Датчиками делают измерения температуры в интервале -60 -400 градусов. Допуск измерения составляет от 1 до 5%. Интервал работы датчика с жидкостью может зависеть от температуры закипания и замерзания. Погрешности измерения датчиков на жидкости от 1 до 3%, определяются температурой среды.

Нижняя граница измерения преобразователей на газе определяется температурой перехода газа в жидкое состояние, верхняя граница – стойкостью баллона к воздействию температуры.

Что такое и какие бывают датчики температуры. Рассмотрена классификация термодатчиков по принципу действия, когда какие типы датчиков лучше применять. На какие характеристики необходимо обратить внимание при выборе датчиков температуры. Обзор производителей и продавцов.
Вы также можете посмотреть другие статьи. Например, «Датчики измерения влажности(гигрометры)» или «Виды давления».

Большинство технологических процессов идет сейчас по пути автоматизации. Кроме того, управление многочисленными механизмами и агрегатами, а зачастую и машинами просто немыслимо без точных измерений всевозможных физических величин. Не маловажными являются измерение давления, измерение угловой скорости, а также линейной и многие-многие другие. Но самыми распространенными (около 50%) являются температурные измерения. К примеру, средняя по величине атомная станция располагает приблизительно 1500-ю контрольных (измерительных) точек, а крупное химпроизводство, насчитывает таких уже около 20 тыс.

Так как диапазон измерений и их условия могут сильно отличатся друг от друга, разработаны разные по точности, помехоустойчивости и быстродействию типы датчиков (и первичных преобразователей). Какого бы типа не был температурный датчик, общим для всех является принцип преобразования. А именно: измеряемая температура преобразуется в электрическую величину (как раз за это и отвечает первичный преобразователь). Это обусловлено тем, что электрический сигнал просто передавать на большие расстояния (высокая скорость приема-передачи), легко обрабатывать (высокая точность измерений) и, наконец, быстродействие.

Дальше, предлагаем вам ознакомиться с различными видами датчиков температуры, а в конце статьи со список вопросов которые необходимо решить перед покупкой датчика температуры. Если же вы хотите сразу перейти к выбору и покупке термодатчика, можете воспользоваться нашим каталогом.

Виды датчиков температуры, по типу действия

Терморезистивные термодатчики

Терморезистивные термодатчики — основаны на принципе изменения электрического сопротивления (полупроводника или проводника) при изменении температуры. Разработаны они были впервые для океанографических исследований. Основным элементом является терморезистор — элемент изменяющий свое сопротивление в зависимости от температуры окружающей среды.

Несомненные преимущества термодатчиков этого типа это долговременная стабильность, высокая чувствительность, а также простота создания интерфейсных схем.

На изображении приведен датчик 702-101BBB-A00, диапазон измерения которого от -50 до +130 °С. Этот датчик относиться к группе кремневых резистивных датчиках(что это такое читайте двумя абзацами ниже). Обратите внимание, на его размеры. Производит этот датчик фирма Honeywell International

В зависимости от материалов используемых для производства терморезистивных датчиков различают:

  1. Резистивные детекторы температуры(РДТ). Эти датчики состоят из металла, чаще всего платины. В принципе, любой мета изменяет свое сопротивление при воздействии температуры, но используют платину так как она обладает долговременной стабильностью, прочностью и воспроизводимостью характеристик. Для измерений температур более 600 °С может использоваться также вольфрам. Минусом этих датчиков является высокая стоимость и нелинейность характеристик.
  2. Кремневые резистивные датчики. Преимущества этих датчиков —хорошая линейность и высокая долговременная стабильностью. Также эти датчики могут встраиваться прямо в микроструктуры.
  3. Термисторы. Эти датчики изготавливаются из металл-оксидных соединений. Датчики измеряет только абсолютную температуру. Существенным недостатком термисторов является необходимость их калибровки и большой нелинейностью, а также старение, однако при проведении всех необходимых настроек могут использоваться для прецизионных измерений.
Читайте также:  Замена фазорегулятора опель астра

Полупроводниковые

В качестве примера изображен полупроводниковый датчик температуры LM75A, выпускаемый фирмой NXP Semiconductors. Диапазон измерений этого датчика от -55 до +150.

Полупроводниковые датчики регистрируют изменение характеристик p-n перехода под влиянием температуры. В качестве термодатчиков могут быть использованы любые диоды или биполярные транзисторы. Пропорциональная зависимость напряжения на транзисторах от абсолютной температуры (в Кельвинах) дает возможность реализовать довольно точный датчик.

Достоинства таких датчиков — простота и низкая стоимость, линейность характеристик, маленькая погрешность. Кроме того, эти датчики можно формировать прямо на кремневой подложке. Все это делает полупроводниковые датчики очень востребованными.

Термоэлектрические(термопары)

Термоэлектрические преобразователи — иначе, термопары. Они действуют по принципу термоэлектрического эффекта, то есть благодаря тому, что в любом замкнутом контуре (из двух разнородных полупроводников или проводников) возникнет электрический ток, в случае если места спаев отличаются по температуре. Так, один конец термопары (рабочий) погружен в среду, а другой (свободный) – нет. Таким образом, получается, что термопары это относительные датчики и выходное напряжение будет зависеть от разности температур двух частей. И почти не будет зависеть от абсолютных их значений.

Выглядеть термопара может так, как показано на рисунке. Это термопара ДТПКХХ4, она измеряет температуры в пределах от -40 до +400. Производит его российская компания Овен.

Диапазон измеряемых с их помощью температур, от -200 до 2200 градусов, и напрямую зависит от используемых в них материалов. Например, термопары из неблагородных металлов – до 1100 °С. Термопары из благородных металлов (платиновая группа) – от 1100 до 1600 градусов. Если необходимо произвести замеры температур свыше этого, используются жаростойкие сплавы (основой служит вольфрам). Как правило используется в комплекте с милливольтметром, а свободный конец (конструктивно выведенный на головку) удален от измеряемой среды с помощью удлиняющего провода. Одним из недостатков термопары является достаточно большая погрешность. Наиболее распространенным способом применения термопар являются электронные термометры.

Пирометры

Пирометры – бесконтактные датчики, регистрирующие излучение исходящее от нагретых тел. Основным достоинством пирометров (в отличие от предыдущих температурных датчиков) является отсутствие необходимости помещать датчик непосредственно в контролируемую среду. В результате такого погружения часто происходит искажение исследуемого температурного поля, не говоря уже о снижении стабильности характеристик самого датчика.

Различают три вида пирометров:

  1. Флуоресцентные. При измерении температуры посредством флуоресцентных датчиков на поверхность объекта, температуру которого необходимо измерить, наносят фосфорные компоненты. Затем объект подвергают воздействию ультрафиолетового импульсного излучения, в результате которого возникает послеизлучение флуоресцентного слоя, свойства которого зависят от температуры. Это излучение детектируется и анализируется.
  2. Интерферометрические. Интерферометрические датчики температуры основаны на сравнении свойств двух лучей – контрольного и пропущенного через среду, параметры которой меняются в зависимости от температуры. Чувствительным элементом этого типа датчиков чаще всего выступает тонкий кремниевый слой, на коэффициент преломления которого, а, соответственно, и на длину пути луча, влияет температура.
  3. Датчики на основе растворов, меняющих цвет при температурном воздействии. В этом типе датчиков-пирометров применяется хлорид кобальта, раствор которого имеет тепловую связь с объектом, температуру которого необходимо измерить. Коэффициент поглощения видимого спектра у раствора хлорида кобальта зависит от температуры. При изменении температуры меняется величина прошедшего через раствор света.

Акустические

Акустические термодатчики – используются преимущественно для измерения средних и высоких температур. Акустический датчик построен на принципе того, что в зависимости от изменения температуры, меняется скорость распространения звука в газах. Состоит из излучателя и приемника акустических волн (пространственно разнесенных). Излучатель испускает сигнал, который проходит через исследуемую среду, в зависимости от температуры скорость сигнала меняется и приемник после получения сигнала считает эту скорость.

Используются для определения температур, которые нельзя измерить контактными методами. Также применяются в медицине для неинвазивных (без операционного проникновения внутрь тела больного) измерения глубинной температуры, например, в онкологии. Недостатками таких измерений является то, что при прикосновении они могут вызывать ответные физиологические реакции, что в свою очередь влечет искажение измерения глубинной температуры. Кроме того, могут возникать отражения на границе «датчик-тело», что также способно вызывать погрешности.

Читайте также:  Замена лампочки габаритных огней шевроле круз

Пьезоэлектрические

В датчиках этого типа главным элементов является кварцевый пьезорезонатор.

Как известно пьезоматериал изменяет свои размеры при воздействии тока(прямой пьезоэффект). На этот пьезоматериал попеременно передается напряжение разного знака, от чего он начинает колебаться. Это и есть пьезорезонатор. Выяснено, что частота колебаний этого резонатора зависит от температуры, это явление и положено в основу пьезоэлектрического датчика температуры.

Практически в любой современной аппаратуре есть датчики температуры. Это устройство, которое позволяет измерить температуру объекта или вещества, используя при этом различные свойства и характеристики измеряемых тел или среды. Не смотря на то, что все термодатчики призваны измерять температуру, разные типы датчиков делают это абсолютно по-разному. Давайте подробнее разберем принцип работы и характеристики основных видов термодатчиков.

Классификация термодатчиков по принципу работы

По принципу измерения все датчики измерения температуры подразделяются на:

  • Термоэлектрические (термопары);
  • Терморезистивные;
  • Полупроводниковые;
  • Акустические;
  • Пирометры;
  • Пьезоэлектрические.

Термоэлектрические датчики температуры (термопары)

Принцип работы этой группы датчиков основан на том, что в замкнутых контурах проводников или полупроводников возникает электрический ток, если места спайки различаются по температуре. Для измерения температуры, один конец термопары помещают в среду измерения, а другой служит для снятия значений. Единственным, но существенным недостатком этого вида измерителей является их довольно большая погрешность, что недопустимо для многих технологических процессов.

Примером такого датчика может служить датчик ТСП Метран-246, который предназначен для измерения температуры твердых тел.

Он применяется в металлообработке, и служит для контроля температуры подшипников. Диапазон измерения от -50 до +120 градусов по Цельсию, выходной сигнал для считывания – аналоговый.

Видео о датчиках температуры смотрите ниже:

Терморезистивные датчики

Как следует из названия, этот тип датчиков работает по принципу изменения сопротивления проводника при изменении его температуры. Благодаря простой и надежной конструкции, датчики этого типа широко применяются в электронике и машиностроении. Неоспоримым плюсом этих измерителей является высокая точность, чувствительность и простые устройства считывания.

Примером терморезистивного датчика может служить модель 700-101BAA-B00, которая имеет начальное сопротивление в 100 Ом, и диапазон измерений от -70 С° до +500 С°.

Выполнен он с применением платиновой пластинки и никелевых контактов. Широко используется в электронике и промышленных автоматах.

Полупроводниковые термодатчики

Этот тип датчиков работает на принципе изменения характеристик p-n перехода под воздействием температуры. Так как зависимость напряжения на транзисторе от температуры всегда пропорциональна, можно сделать датчик с высокой точностью измерения. Несомненными плюсами такого решения является дешевизна, высокая точность данных, и линейность характеристик на всем диапазоне измерения. Кроме того, их можно монтировать прямо на полупроводниковой подложке, что делает этот тип датчиков незаменимым для микроэлектронной промышленности.

Примером такого устройства может стать датчик LM75A. Температурный диапазон — от -55 С° до +150 С°, погрешность измерений – ±2 С°. Шаг измерения – всего 0,125 С°. напряжение питания – от 2.5 до 5.5 В, а время преобразования сигнала – до 0.1 секунды.

Акустические датчики температуры

Принцип работы этих устройств – разная скорость звука в среде при разной температуре. Зная изначальные данные, можно рассчитать изменения температуры по скорости прохождения звуковой волны в веществе. Это бесконтактный метод, позволяющий измерять температуру в закрытых полостях, а также в среде, недоступной для прямого измерения. Используются такие датчики в медицине и промышленности – там, где проникновение к измеряемому веществу невозможно.

Пирометры (тепловизоры)

Бесконтактный тип термодатчиков, считывающих излучение, которое исходит от нагретых тел. Этот тип устройств позволяет измерять температуру дистанционно, без приближения к среде, в которой производятся замеры. Это позволяет работать с большими температурами и сильно разогретыми объектами без опасного сближения.

Все пирометры по принципу работы подразделяют на интерферометрические, флуоресцентные и датчики на основе растворов, меняющих цвет в зависимости от температуры.

Пьезоэлектрические датчики температуры

Все датчики этого типа работают при помощи кварцевого пьезорезонатора. Вся суть работы – прямой пьезоэффект, то есть изменение линейных размеров пьезоэлемента под воздействием электрического тока. При попеременной подаче разнофазного тока с определенной частотой, пьезорезонатор колеблется, при этом частота его колебаний зависит от температуры. Зная эту зависимость, можно легко преобразовать данные о частоте колебаний резонатора в температуру.

Ещё одно видео о разновидностях термодатчиков:

Благодаря широкому диапазону измерений и высокой точности, такие датчики применяют в основном при проведении исследований и опытов, где нужна высокая надежность и долговечность.

Комментировать
2 769 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Автомобили
0 комментариев
No Image Автомобили
0 комментариев
No Image Автомобили
0 комментариев
Adblock
detector