Торцевые уплотнения для насосов – это герметизирующие устройства, относящиеся к контактному типу уплотнений с парой трения поверхностей двух деталей. Одна деталь крепится на валу и является подвижной, другая неподвижная располагается в корпусе насоса. Трущаяся пара устройства работает в условиях перепадов давления с минимальным расходом смазывающего вещества. Смазкой в данных устройствах, зачастую, выступает уплотняемая среда.
По статистике торцевые уплотнения для всякого насоса считаются самым уязвимым узлом среди всех конструктивных элементов насоса.
Конструкция торцевого уплотнения для насосов
Стандартная конструкция устройства состоит из 9 базовых элементов:
Одинарное торцевое уплотнение насосов
- болт установочный для закрепления уплотнения на валу рабочего колеса;
- уплотнитель из эластомера;
- штифт, передающий на подвижное кольцо вращение вала;
- кольцо подвижное;
- кольцо неподвижное;
- задняя стенка корпуса насоса;
- штифт, предотвращающий вращение неподвижного кольца;
- вал водяного насоса рабочего колеса;
- пружины или сильфон, обеспечивающие плотность прилегания подвижного и неподвижного колец.
Торцевые уплотнения для насосов (видео)
Принцип работы торцевого уплотнения насоса
В общих случаях торцевое уплотнение вала насоса имеет два кольца:
- неподвижное кольцо, расположенное в корпусе;
- подвижное кольцо, располагающееся на валу агрегата.
Одно из колец может аксиально перемещаться, благодаря наличию упругого поджимающего элемента (пружины, сильфона, мембраны). Этот элемент вместе с нажимной втулкой и подвижным кольцом образуют аксиально-подвижный блок или поджимной узел. Они обеспечивают контакт торцевых поверхностей в сопряжении подвижного и неподвижного колец пары без поджимающей силы давления среды.
Обязательными деталями устройства торцевого уплотнения являются вторичные (вспомогательные) уплотнения между ротором и вращающимся блоком, между корпусом и статорным блоком. В конструкцию входят элементы фиксации уплотняющих колец (приводные штифты, установочные винты), которые осуществляют привод подвижного кольца и предотвращают проворот (угловое смещение) неподвижного кольца относительно корпуса.
Разновидности уплотнений торцевых для насосов
Деление уплотнительных торцевых устройств на разные типы происходит по следующим критериям.
- По конструкции бывают:
- одинарные;
- двойное торцевое уплотнение валов насосов;
- комбинированные.
- По расположению в оборудовании:
- с внутренним расположением;
- с наружным расположением.
Устройство торцевого (механического) уплотнения
- По конструктивному исполнению:
- обычные, по евростандарту EN 12756 (DIN 24960);
- специальные, могут соответствовать евростандарту;
- картриджные (патронные), могут соответствовать евростандарту.
- По коэффициенту гидравлической нагрузки:
- гидравлически нагруженные;
- гидравлически разгруженные.
- По используемым материалам:
- со стандартными (штатными) материалами;
- со специальными материалами (для работы в особых условиях).
Группы торцевых уплотнений по нагруженности
Степень нагрузки на торцевые уплотнения различается и зависит от условий работы: давления и частоты вращения вала. С целью оценки условий нагруженности устройства в уплотняющем стыке во время работы существуют отдельные рекомендации.
Для общей характеристики степени тяжести условий работы уплотнений, используют произведение двух показателей: скорости V скольжения в паре трения и перепада давления P в устройстве.
Виды торцевых уплотнений
Значения показателей P,V и P хV для различных уплотнений подразделяют по степени их нагруженности на 4 группы:
- низшую, где P до 0,1 МПа, V до 10 м/с, P хV до 1,0 МПа х м/с;
- среднюю, где P до 1,0 МПа, V до 10 м/с, P хV до 5,0 МПа х м/с;
- высокую, где P до 5,0 МПа, V до 20 м/с, P хV до 50,0 МПа х м/с;
- высшую, где P более 5,0 МПа, V более 20 м/с, P хV более 50,0 МПа х м/с.
Способы правки искривлений вала насоса
В процессе эксплуатации насосов, под воздействием повышенных нагрузок может происходить кривизна вала. Искривленный вал агрегата подлежит восстановлению различными методами правки. Используются такие способы правки вала:
- наклеп;
- термомеханический;
- термический;
- релаксации напряжений.
Все перечисленные способы правки вала, за исключением наклепа, связаны с его нагреванием. Такие показатели, как значение прогиба, длина, диаметр и материал вала являются определяющими в выборе способа его правки.
Виды уплотнений в центробежных насосах
Основным условием устойчивой работы центробежного агрегата является конструкция его уплотнения. Агрегаты отличаются размерами, характеристиками, предназначением, перекачиваемыми средами.
Ремонт уплотнения насоса
Исходя из этих параметров, подбирается оптимальный вид уплотнения вала помпы. Виды уплотнений вала бывают следующими:
- сальниковые одинарные и двойные;
- торцовые одинарные и двойные;
- манжетные;
- щелевые (лабиринтные).
Одинарное уплотнение торцовое насоса
Применяется в помпах, перекачивающих растворы, утечка и попадание которых во внешнюю среду недопустимо в больших количествах. К таким жидкостям относятся: горячие, легкокипящие, агрессивные, неорганические и органические.
Такой вид уплотнения требует повышенной точности монтажа блока установки и высокого качества поверхности вала. При обработке трущихся поверхностей допуск на осевое биение минимальный. Проводится и последующая тонкая шлифовка. Утечка жидкости при таком одинарном устройстве незначительна.
Насосы с двойным торцевым уплотнением
Такое устройство отличается от устройства одинарного количеством уплотняющих притертых поверхностей. Устройство дополнено системой подвода затворной жидкости, которая препятствует попаданию во внешнюю среду рабочей жидкости. В роли затворной жидкости выступает вода, глицерин и прочие жидкости, не взаимодействующие с перекачиваемой средой.
Есть два варианта размещения сдвоенных уплотнений:
Первый вариант применяется чаще. В данном случае давление затворной жидкости превышает на 1-2 бара давление перекачиваемой жидкости. Это достигается за счет использования дозировочного насоса, специального сосуда или гидроусилителя. Преимущество такого варианта в том, что зазор между подвижным и неподвижным кольцами заполнен затворной жидкостью, которая препятствует проникновению твердых частиц и грязи из перекачиваемой среды. Это существенно увеличивает срок эксплуатации устройства, в сравнении с вариантом Тандем.
Двойное торцевое уплотнение насоса Grundfos (вид в разрезе)
В варианте Тандем затворная жидкость обладает меньшим давлением, чем перекачиваемая. При разгерметизации устройства, именно перекачиваемая жидкость попадает в затворную. Это важно там, где недопустимо проникновение посторонней жидкости в напорную линию. В данном варианте нет надобности осуществлять серьезный контроль за давлением затворной жидкости, что в определенных ситуациях существенно.
Материал для торцевых уплотнений на насосы
В выборе торцевого устройства определяющим является подбор материала для пары трения и вторичных уплотнений. Данные элементы изготавливаются из различных материалов.
Для пары трения используют следующие материалы:
- металл (нержавеющая сталь) – SUS;
- графит – CAR;
- керамика – CER;
- карбид кремния – SIC;
- карбид вольфрама – TC.
Вторичные уплотнения изготовляют из материалов, имеющих различную температуростойкость:
- нитрил-бутадиеновый каучук (NBR), от -20 до +120 градусов;
- этилен-пропиленовый каучук (EPDM), от -30 до +170 градусов;
- фторкаучук (Viton), от -30 до +185 градусов;
- фторопласт (PTFE), от -260 до +260 градусов.
Торцевые уплотнения для насосов разных производителей
Для насосов выпускаемых различными производителями существует своя маркировка. Все уплотнительные устройства изготовляются из современных материалов с продолжительным сроком эксплуатации.
Торцовые уплотнения ANGA
Приведем некоторый перечень популярных насосов и торцевых уплотнений к ним:
- к помпам APV – торцы: SNAPV(W+), SNAPV1(W), SNAPV2(W), SNAPV(DW), SNAPV 3, SNAPV 4, SNAPV 5, SNAPV 6, SNAPV 7, SNAPV 8, SNAPV 9, SNAPV 10, SNAPV 11, SNAPV 12, SNAPV 13;
- к помпам Allweiler – торцы: SNAR, SNM 3, SNAL 1;
- к помпам Lowara – торцы: SNAR, SNM 3, SNLW;
- к насосам Inoxpa – торцы: SNIXP 1, SNIXP 2, SNIXP 3, SNIXP 4, SNM 3, SNFN, SNMG, SN 2100, SNAR;
- к насосам EMU – торцы: SNMG, SNEMU 1, SNEMU 2;
- к помпам Hilge – торцы: SNFN, SNAR, SNM 3, SNHG, SNBT;
- к помпам Johnson – торцы: SNJH 1, SNJH 2, SNJH 3, SNJH 4;
- к помпам Calpeda – SNMG, SNFN, SNAR, SNM 3, SN 2100.
Отдельные производители насосов применяют торцевые уплотнительные устройства собственного производства, другие используют устройства, выпускаемые специализирующимися на их производстве компаниями.
Содержание
Торцевое уплотнение вала насоса предназначено для разделения пространств с различными давлениями, рабочими средами и температурами. Уплотнения для насосов предотвращают, например, проникновение посторонних частиц в рабочую среду или утечку смазки из корпуса.
В последние годы в связи с ростом давления, температуры и скорости скольжения чрезмерно повысились требования надежности прежде всего к данному типу уплотнений. Это вызвано также применением новых химических соединений, облучением, которое влияет на свойства многих материалов, изменяющих срок их службы.
Такие уплотнения монтируются на все современные типы насосов: центробежные, фекальные, поверхностные, погружные, насосные станции и т.д.
Герметизируемые жидкости и газы могут быть самыми разнообразными, например: жидкий кислород, высоконагретый водород, пивное сусло, растворы красителей, различные кислоты, щелочи, асфальт, какао-паста и другое. Чтобы уплотнение насоса отвечало всем необходимым требованиям необходимо использовать коррозионно-стойкие, прочные и теплостойкие материалы.
Однако при этом следует обратить внимание на то, что достижение предельных параметров возможно часто только в случае применения специальных конструкций и вспомогательных приспособлений.
При определении геометрических размеров и конструкции уплотнения необходимо учитывать шесть взаимосвязанных между собой факторов.
Торцевые уплотнения для насосов должны отвечать следующим требованиям:
максимально возможной герметичности
наивысшей долговечности, т.е. минимальному износу
наивысшей надежности, т.е отсутствию необходимости в техническом обслуживании и ремонте.
наименьшим потерям на трение и тепловыделение
минимальным размерам
наивысшей экономичности и минимальной стоимости.
К сожалению не все эти требования возможно реализовать в одной конкретной конструкции, поэтому каждое уплотнение является результатом компромиссного решения, которое должно учитывать эксплуатационные факторы и соотношения между ними.
Принцип работы.
Принцип работы торцевого уплотнения можно рассмотреть на примере общей схемы изображенной на рисунке.
Здесь резиновый сильфон выполняет не только функцию радиального уплотнительного элемента, но и пружины. Уплотнение может быть смонтировано и сконструировано таким образом, что нагрузка на уплотнительные поверхности может передаваться, например, только через пружины или манжеты. Однако недостатком такого уплотнения является то, что оно может работать только в очень узком диапазоне давлений, поскольку при повышенном внутреннем давлении уплотнительные поверхности расходятся.
Параметры уплотнений
При рассмотрении конструкции торцевого уплотнения центробежного насоса было установлено, что эффективность его работы зависит геометрических размеров и схемы компоновки. Кроме того, существенное влияние на утечку, потери на трение, надежность и долговечность, оказывают следующие факторы:
1) нагрузка
2) скорость скольжения
3) шероховатость и параллельность контактных поверхностей торцевого уплотнения вала насоса
4) температура уплотняемой жидкости и контактных поверхностей, а так же её изменение со временем
5) форма зазора, зависящая от механической и температурной деформации в процессе работы;
6) сочетание материалов пары трения торцевого уплотнения вала насоса
7) уплотняемая среда, её смазывающие свойства, теплопроводность, степень загрязнения и химический состав.
8) режим трения, вибрация, гидравлические удары, перерывы в движении, пуск под нагрузкой, периодическая работа без смазки, нагрев или охлаждение, течение жидкости по направлению действия центробежной силы, радиальное биение, а также прочие конструктивные и эксплуатационные факторы, причем решающее значение имеет возможность отвода тепла.
Типы торцевых уплотнений
Торцевое уплотнение вала насоса обеспечивает упругогерметичное соединение между вращающейся и неподвижной торцевыми поверхностями.
Исходя из конструктивных особенностей подвижная в осевом направлении часть уплотнения, находящаяся внутри уплотняемой полости, может вращаться (рисунок а) или быть неподвижной (рисунок б).
При внутреннем расположении неподвижного в осевом направлении контркольца, которое в свою очередь может вращаться или быть неподвижным, уплотняемая часть запирается в направлении падения давления.
При наружном расположении контркольца уплотняемая полость запирается невращающейся (рисунок в) или вращающейся (рисунок г) подвижной в осевом направлении частью торцевого уплотнения для насосов.
Несмотря на то, что уплотнения с невращающейся подвижной в осевом направлении частью вследствие меньшей силы инерции и малых потерь на трение выгодны при высокой частоте вращения или большой вязкости среды, в торцевом уплотнении с вращающейся частью условия отвода тепла более благоприятные.
Кроме того выбор типа торцевого уплотнения зависит от перепада температур в радиальном направлении от диаметра, или наоборот, от направления действия центробежной силы, создающей давление, прочности материалов трущейся пары, конструктивных факторов, возможности быстрой замены или легкости контроля. Другими словами все представленные на рисунках варианты торцевого уплотнения вала насоса находят своё применение.
В общем случае уплотнители в зависимости от конструкции бывают:
пружинного типа. Конструкция поджимается за счет одной или двух пружин
сильфонного типа. Уплотнитель и неподвижный элемент прижимает друг к другу специальная гофрированная пружина, которую называют сильфоном.
Кроме того конструктивно и в зависимости от установки кроме одинарных существуют и двойные торцевые уплотнения.
Одинарное.
Самая распространенная схема. Такая установка используется, если не требуется полной герметичности и рабочая температура в пределе +95…+140°С.
Утечки мизерные, но все же существуют. Для воды и неагрессивных жидкостей это не критично, но если требуется перекачка химически активных или даже ядовитых жидкостей, то и небольшие утечки, могут привести к скаплению в помещении опасных паров этих жидкостей.
Для того, чтобы этого избежать, используют двойное уплотнение торцевое.
Двойное торцевое уплотнение насоса
Двойное торцевое уплотнение по схеме «спина к спине»
Этот вариант компоновки применяется при перекачивании взрывоопасных или ядовитых жидкостей, утечки паров которых не допустимы. Для работы этого узла требуется подвод затворной жидкости, давление которой должно быть больше давление перекачиваемой насосом среды.
Уплотнения этого типа могут работать до температуры +140…+200°С.
Двойное торцевое уплотнение по схеме «тендем».
Используется, когда подвод затворной жидкости к узлу уплотнения извне невозможен. Для работы такого узла необходимо изготовление автономного бачка с жидкостью для охлаждения. Уплотнения этого типа могут работать с температурами до +140°С.
Наиболее простая конструкция изображена на рисунке далее.
Схема торцевого уплотнения
Уплотняемый узел, в данном случае, расположен между плоскостями корпуса уплотнения поз.1 и контркольца поз.5. Под действием осевых сил поток (изображен стрелками) стремится пройти в радиальном направлении через зазор между корпусом поз.1 и контркольцом поз.5 и раскрыть уплотнение. Чтобы этого не произошло на валу установлено упорное кольцо поз.2 закрепленное штифтом поз.3. Упорное кольцо прижимает корпус поз.1 к контркольцу поз.5 пружиной поз.4. Таким образом обеспечивается герметичность вращающихся элементом. Герметичность корпуса поз.1 по валу, а так же герметичность контркольца поз.5 по втулке обеспечивают прокладки поз.6, 7.
В общем случае торцевое уплотнение состоит из неподвижного и вращающегося уплотнительных элементов. В отличие от сальникового уплотнения в этом случае геометрические параметры уплотнительной поверхности можно выполнить более точно и с меньшими затратами, не изнашивается поверхность вала или его вкладыша. Для компенсации нарушения параллельности поверхностей уплотнительных колец, вызванного термическим удлинением деталей и узлов уплотнения, а также износом этих поверхностей, необходимо иметь по меньшей мере одну упругую деталь, такую как мембрана, сильфон, эластичная резиновая фасонная деталь или, в данном случае, пружина поз.4.
Замена и стоимость
Замена уплотнения должна выполняться квалифицированным специалистом. Если по ряду причин вызвать специалиста нет возможности, то замену уплотнения выполняют самостоятельно.
Этапы замены уплотнения:
1 Отключить питание насоса
2 Слить рабочую среду. Убедиться, что в системе нет давления.
3 Снять защитный кожух
4 Демонтировать поврежденный узел
5 Руководствуясь инструкции по монтажу установить новое уплотнение.
6 Собрать насосный агрегат в обратном порядке согласно руководству по эксплуатации.
Стоимость
Стоимость торцевого уплотнения в среднем составляет около 400 руб. для обычного бытового насоса. Для замены торцевого уплотнения в профессиональном оборудовании придется отдать около 2000 руб.
Видео по теме
До широкого распространения торцев большой популярностью пользовались сальниковые уплотнения. Сальник в насосе это конструктивно шнур, пропитанный графитом или фторопластом, который укладывается в канавку вокруг вала и зажимается каким-либо способом.
Несмотря на невысокую стоимость, которой характеризуется набивной сальник, торцевое уплотнение для насоса, обеспечивающее лучшую герметичность и имеющее повышенную надежность и долговечность, всё больше применяется в центробежных агрегатах.
Торцевые уплотнения являются наиболее надежным и самым распространенным типом защиты от протечек жидкости (или газа) по валу насоса и выхода ее в окружающую среду. До торцевых уплотнений большинство насосных агрегатов оснащались сальниковым типом уплотнения. Сальниковое уплотнение представляет собой набивку из колец, которые сжаты вокруг вала. Данная уплотнительная система не могла похвастаться герметичностью, и из-за огромного количества прочих недостатков перестала соответствовать растущим требованиям рынка. В конечном счете, сальниковое уплотнение уступило свое место торцевым уплотнениям. Торцевые уплотнения просты в монтаже, могут работать длительное время с минимальным обслуживанием или вообще без него.
Чаще всего торцевые уплотнения устанавливается на вал насоса или мешалки:
Конструкция и типы торцевых уплотнений
Основными компонентами торцевого уплотнения являются уплотнительные кольца, на которых действует механическая сила, создаваемая пружинами или сильфонами, и гидравлическая сила, создаваемая давлением рабочей жидкости. Уплотнительное кольцо, которое вращается вместе с валом, называется «вращающимся кольцом». Уплотнительное кольцо, закрепленное на корпусе насоса, называется «стационарным кольцом». Вторичные уплотнения необходимы для выполнения статического уплотнения между вращающимися кольцами и валом насоса, а также между неподвижными кольцами и корпусом насоса. В качестве вторичных уплотнений чаще всего используются эластомерные кольцевые уплотнения.
- Вращающееся кольцо
- Стационарное кольцевое уплотнение
- Стационарное кольцо
- Вращающееся кольцевое уплотнение
- Пружина
- Вращающийся вал
Одинарные торцевые уплотнения
Одинарное торцевое уплотнение внутреннее
Это наиболее популярный и часто применяемый тип уплотнения для большинства поставленных задач. Свое имя данное уплотнение получило, потому что полностью погружено в перекачиваемую жидкость в процессе работы.
Одинарное торцевое уплотнение внешнее
В этом исполнении перекачиваемая жидкость находится внутри уплотнения, а наружная часть вращающегося кольца подвергается воздействию атмосферы.
Чаще всего данный тип уплотнения используется при работе с агрессивными жидкостями, которые могут повредить материалы внутренних уплотнений. В этом типе уплотнений, со стороны перекачиваемой среды, не применяются металлические детали. В крайних случаях используются специальные сплавы: Hastelloy или Titanium. Вращающиеся и стационарные кольца выполняют из графита, керамики или карбида кремния. Прокладки и кольцевые уплотнения используют из фторэластомера, PTFE или перфторэластомера.
Двойные торцевые уплотнения
Двойное торцевое уплотнение «спина-к-спине»
Двойные торцевые уплотнения данной конструкции рекомендуется при работе с критическими средами (легколетучими, абразивными, токсичными или ядовитыми), когда недопустима возможность попадания рабочей жидкости в атмосферу. Торцевые уплотнения «спина к спине» называются так, потому что два уплотнения расположены буквально спина к спине, что дает возможность создать барьер из затворной жидкости под давлением. Смазка поверхностей уплотнения также осуществляется затворной жидкость, которая должна быть совместима с перекачиваемой жидкостью.
В конфигурации «спина к спине» давление затворной жидкость выше на 1 бар (или на 10%) чем давление в проточной части насоса. Это позволяет избежать проблемы с раскрытием торцевого уплотнения в процессе работы, также предотвращает выход перекачиваемой среды в атмосферу
Двойное торцевое уплотнение Тандем
В этой конфигурации два уплотнения располагаются друг за другом с одинаковой ориентацией. Затворная жидкость, для данной конструкции, чаще всего находится под более низким давлением, чем рабочая среда.
В исполнении без давления есть преимущество в том, что можно не использовать дорогостоящую термосифонную систему для обвязки торцевого уплотнения, как например для конструкции «спина к спине».
Однако эта конфигурация не подходит для работы с токсичными, абразивными или высоковязкими жидкостями. Тандемные двойные уплотнения обычно используются на нефтехимических и нефтеперерабатывающих заводах, где насосные агрегаты работают с жидкостями с высоким давлением насыщенных паров и с низким удельным весом.
Двойное уплотнение
Это новая конфигурация, предусмотренная стандартом API 682 (American Petroleum Institute), где два уплотнения собраны в виде тандема. Специальная конструкция уплотнительных колец дает возможность работать как в системе без давления, так и в системе с избыточным давлением (как при конфигурации «спина к спине»), получая преимущества двух предыдущих конфигураций. В этой конфигурации API 682 возможно только картриджное исполнение.
Двойное торцевое уплотнение «лицо к лицу»
«Лицо к лицу» — это последняя конфигурация из двойных торцевых уплотнений. Данная конструкция состоит из уникального центрального стационарного кольца и двух противоположных уплотнений и может работать так же, как двойное уплотнение (под давлением и без него). По сравнению с другими версиями у данного уплотнения есть ряд преимуществ:
— уменьшенные габаритные размеры;
— пружины не контактируют с перекачиваемой средой;
Выбор торцевых уплотнений и планов обвязки
Правильный подбор торцевых уплотнений для технологических процессов на химических и нефтехимических предприятиях – задача сложная и требующая детальной проработки. Многие параметры должны быть учтены при подборе: характеристики жидкости, условия эксплуатации, тип оборудования, на которое планируется установка уплотнения. Стандарт API 682 – мощный инструмент, помогающий сделать правильный выбор торцевого уплотнения для конкретного применения.
Ниже представлены типы торцевых уплотнений по стандарту API Plan 682 и рекомендации в каких случаях какое уплотнение применять.
Одинарные торцевые уплотнения
API Plan 01 (План 01)
Описание: Внутренняя промывка с нагнетания насоса. Работает схоже с Plan 11
Где применять: Чистые, неагрессивные, невоспламеняющиеся жидкости. В качестве уплотнения горизонтальный стандартных насосов.
API Plan 02 (План 02)
Описание: Глухая уплотнительная камера
Где применять: Чистые, неагрессивные, невоспламеняющиеся жидкости. В качестве уплотнения вертикальных мешалок
API Plan 03 (План 03)
Описание: Циркуляция жидкости создается с благодаря дизайну уплотнительной камеры, который позволяет предотвратить оседание твердых включений на поверхностях уплотнений.
Где применять: Грязные или загрязненные жидкости
API Plan 11 (План 11)
Описание: Внешняя промывка жидкости с нагнетания насоса через дроссель. План обвязки по умолчанию для одинарного уплотнения
Где применять: Чистые, неполимеризующиеся жидкости
API Plan 13 (План 13)
Описание: Рециркуляция из уплотнительной камеры насоса на всасывание насоса.
Стандартный план обвязки для вертикальных насосов
Где применять: Умеренные текучие среды с умеренным содержанием твердых веществ. Неполимеризующиеся жидкости.
API Plan 14 (План 14)
Описание: Подача промывки с нагнетания насоса и рециркуляция ее на всасывание насоса. Комбинация Плана 11 и Плана 13.
Где применять: Вертикальные насосы Чистые, умеренные текучие среды, неполимеризующиеся жидкости
API Plan 21 (План 21)
Описание: Подача промывки с нагнетания насоса на теплообменник. Теплообменник добавляется к обвязке по Плана 11. Тем самым промывка улучшает уровень отвода тепла.
Где применять: Высокотемпературное применение, обычно менее 177°C. Горячая вода более 80°C. Чистые, неполимеризующиеся жидкости.
API Plan 23 (План 23)
Описание: Подача промывки из уплотнительной камеры насоса через теплообменник. Стандартное применение при работе с горячей водой.
Где применять: Высокотемпературное обслуживание, горячие углеводороды. Котловая вода и горячая вода выше 80°C. Чистые, не полимеризующиеся жидкости.
API Plan 31 (План 31)
Описание: Подача промывки из нагнетания насоса через циклонный сепаратор. Отделенные твердые включения возвращаются на всасывание насоса.
Где применять: Загрязненные жидкости или жидкости с включениями. Например, вода с песком. Неполимеризующиеся среды.
API Plan 32 (План 32)
Описание: Подача промывки из внешнего чистого источника
Где применять: Загрязненные жидкости или жидкости с включениями. Высокотемпературное исполнение. Полимеризующиеся и/или окисляющие среды.
API Plan 41 (План 41)
Описание: Подача промывки из нагнетания через циклонный сепаратор и теплообменник. Комбинация Плана 21 и Плана 31.
Где применять Высокотемпературное исполнение (жидкости с температурой до +177°C). Загрязненные жидкости или жидкости с включениями. Например, вода с песком. Неполимеризующиеся среды.
Двойные торцевые уплотнения
API Plan 52 (План 52)
Описание: Затворная жидкость циркулирует без давления через бачок. Жидкость циркулирует с помощью откачивающего кольца в двойное уплотнение
Где применять: для обвязки двойных уплотнений без давления. Для опасных, токсичных жидкостей. Легколетучие углеводороды, жидкости с высоким давлением насыщенных паров, теплоносители
API Plan 53A (План 53А)
Описание: Затворная жидкость циркулирует под давления через бачок. Жидкость циркулирует с помощью откачивающего кольца в двойное уплотнение
Где применять: для обвязки двойных уплотнений под давлением. Для опасных, токсичных жидкостей. Легколетучие углеводороды, жидкости с высоким давлением насыщенных паров, теплоносители. Грязные, абразивные и полимеризующиеся среды.
API Plan 53B (План 53В)
Описание: Затворная жидкость циркулирует под давления с мембранным аккумулятором. Жидкость циркулирует с помощью откачивающего кольца в двойное уплотнение.
Где применять: для обвязки двойных уплотнений под давлением. Для давлений выше, чем при обвязке по Плану 53А. Для опасных, токсичных жидкостей. Легколетучие углеводороды, жидкости с высоким давлением насыщенных паров, теплоносители. Грязные, абразивные и полимеризующиеся среды.
API Plan 53C (План 53С)
Описание: Затворная жидкость циркулирует под давления с поршневым аккумулятором. Жидкость циркулирует с помощью откачивающего кольца в двойное уплотнение. Возможность динамического отслеживания давления в системе.
Где применять: для обвязки двойных уплотнений под давлением. Для давлений выше, чем при обвязке по Плану 53А. Для опасных, токсичных жидкостей. Легколетучие углеводороды, жидкости с высоким давлением насыщенных паров, теплоносители.
API Plan 54 (План 54)
Описание: Затворная жидкость циркулирует под давлением из внешнего источника.
Где применять: для обвязки двойных уплотнений под давлением. Для опасных, токсичных жидкостей. Легколетучие углеводороды, жидкости с высоким давлением насыщенных паров, теплоносители. Грязные, абразивные и полимеризующиеся среды.
API Plan 55 (План 55)
Описание: Затворная жидкость циркулирует без давления из внешнего источника.
Где применять: для обвязки двойных уплотнений без давления. Для опасных, токсичных жидкостей. Для жидкостей, которые могут затвердевать при контакте с атмосферой.
Промывка уплотнений
API Plan 62 (План 62)
Описание: Внешняя промывка со стороны атмосферы. В качестве промывочной среды чаще всего применяют пар, азот или воду.
Где применять: для предотвращения накопления твердых частиц на атмосферной стороне уплотнения и для защиты от обледенения. Применяется для одинарных торцевых уплотнений. Кристаллизирующиеся, окисляющиеся жидкости. Горячие углеводороды. Щелочи. Холодные жидкости с температурой ниже 0°C.
API Plan 65A (План 65А)
Описание: Внешний дренаж с контролем протечек на атмосферной стороне уплотнения
Где применять: может быть использовано как самостоятельная обвязка или с промывочным Планом 62. Используется с закрывающей втулкой дроссельной заслонки. Применяется при удаленных локациях и критических условиях окружающей среды
API Plan 65B (План 65В)
Описание: Внешний дренаж с контролем протечек на атмосферной стороне уплотнения
Где применять используется с закрывающей втулкой дроссельной заслонки. Для невоспламеняющихся и конденсирующихся сред. Применяется при удаленных локациях и критических условиях окружающей среды.
API Plan 66А (План 66А)
Описание: Внешний дренаж с контролем протечек на атмосферной стороне уплотнения с использованием двух дроссельных втулок в линию
Где применять может использоваться как самостоятельная обвязка или с промывочным Планом 65А, 65B. Для невоспламеняющихся и конденсирующихся сред. Применяется при удаленных локациях и критических условиях окружающей среды.
API Plan 66B (План 66В)
Описание: Внешний дренаж с контролем протечек на атмосферной стороне уплотнения с использованием дроссельной втулки и заглушки.
Где применять может использоваться как самостоятельная обвязка или с промывочным Планом 65А, 65B. Для воспламеняющихся и невоспламеняющихся сред. Применяется при удаленных локациях и критических условиях окружающей среды. Используется, когда добавляется контроль протечек на атмосферной стороне к уже существующему уплотнению.
Газовые уплотнения
API Plan 72 (План 72)
Описание: Буферная газовая система контроля состояния уплотнения без давления. В большинстве случаев с использованием азота, в качестве буферного газа.
Где применять: с двойными уплотнениями без давления. Для опасных, токсичных жидкостей. Легколетучие углеводороды, жидкости с высоким давлением насыщенных паров. Чистые, неполимеризующиеся, неокисляющиеся среды. Используются в комбинации с обвязками План 75 и/или План 76
API Plan 74 (План 74)
Описание: Затворная газовая система контроля состояния уплотнения под давлением. В большинстве случаев с использованием азота, в качестве затворного газа.
Где применять: с двойными уплотнениями под давлением. Для опасных, токсичных жидкостей. Легколетучие углеводороды, жидкости с высоким давлением насыщенных паров. Чистые, неполимеризующиеся, неокисляющиеся среды. Жидкости с умеренной температурой.
API Plan 75 (План 75)
Описание: Дренаж из уплотнительной камеры в сборник жидкости с последующим извлечением газа.
Где применять: может использоваться как самостоятельная обвязка или совместно с Планом 72. Для конденсирующихся при температуре окружающей среды жидкостях. Легколетучие углеводороды, жидкости с высоким давлением насыщенных паров. Чистые, неполимеризующиеся, неокисляющиеся среды. Агрессивные и токсичные жидкости.
API Plan 76 (План 76)
Описание: Вентиляция из уплотнительной камеры для удаления газа.
Где применять: может использоваться как самостоятельная обвязка или совместно с Планом 72. Для неконденсирующихся при температуре окружающей среды жидкостях. Легколетучие углеводороды, жидкости с высоким давлением насыщенных паров. Чистые, неполимеризующиеся, неокисляющиеся среды. Агрессивные и токсичные жидкости.
Материальное исполнение торцевых уплотнений
Хорошая работа уплотнения требует идеального прилегания поверхностей уплотнения даже при постоянном росте рабочей температуры. Кроме того, высокие скорости вращения и высокие давления, при которых должны работать уплотнения, требуют оптимальной смазки и охлаждения. Поэтому выбор подходящего материала уплотнительной поверхности является первым и самым важным шагом для длительной работы всего насосного агрегата. Рассмотрим основные материалы, используемые в торцевых уплотнениях.
Материальные исполнения колец трения
- Графит;
- PTFE;
- Стеллит;
- Хромированная сталь;
- Карбид вольфрама;
- Карбид кремния;
Материальные исполнения уплотнительных колец
- Бутадиен нитрильный каучук;
- Фторкаучук;
- Этиленпропилен;
- Перфторэластомер;
- Силикон;
- Неопрен;
- Афлас;
- PTFE;
- FEP;
- Графойл;
Основные производители
Выбор надежного торцевого уплотнения гарантирует безаварийную работу насосного агрегата в течение долгого времени. На данный на рынке представлено широкое разнообразие механических уплотнений, в том числе и российского производства. Купить торцевые уплотнения можно следующих изготовителей