No Image

Кулер алюминий или медь

2 881 просмотров
21 января 2020

По различным компьютерным форумам и магазинам бродит огромное число мифов, связанных со сборкой и настройкой ПК. Некоторые из них действительно были правдивыми лет эдак 10 назад, а некоторые уже изначально были неверны. И сегодня мы поговорим о мифах, которые связаны с системами охлаждения как системного блока целиком, так и видеокарты и процессора по отдельности.

Миф первый: комплектную термопасту к кулеру нужно выкидывать и брать нормальную

И да и нет. Все зависит от класса кулера: к примеру, если вы берете простенький кулер, который состоит из обычного алюминиевого радиатора и небольшого вентилятора, то вам и положат в комплекте простую термопасту уровня КПТ-8. И большего вам и не нужно: все равно такой кулер охладит ну максимум Core i3, а при его тепловыделении (порядка 30 Вт) теплопроводящие свойства термопасты не играют особой роли, и смена комплектной термопасты на что-то дорогое (даже на жидкий металл) снизит вам температуру от силы на пару градусов — то есть игра свеч не стоит. С другой стороны, если вы берете дорогой кулер от той же Noctua, с 5 медными теплотрубками и никелерованием, то вам и положат в комплекте достаточно хорошую термопасту, как минимум уровня Arctic MX-2. Так что и здесь смена термопасты на лучшую (или на все тот же жидкий металл) снизит температуру опять же несильно. Но, с другой стороны, обычно такие кулеры берутся под разгон, так что пара градусов может быть критичной. Но в общем и целом то, что комплектная термопаста плохая — это миф: она хорошая для своего класса кулера.

Миф второй: из двух вентиляторов эффективнее тот, у которого обороты выше

Достаточно забавный миф, который в корне не верен. Самой важной характеристикой вентилятора является отнюдь не его максимальное число оборотов в минуту, и не форма лопастей, и даже не размер — а воздушный поток, который он создает: то есть объем воздуха, который прокачивает такой вентилятор в единицу времени. И чем выше этот показатель — тем эффективнее будет работать вентилятор. И поэтому скорость вентилятора тут роли не играет: 120 мм вертушка на 1000 об/м зачастую создает больший воздушный поток, чем 80 мм вертушка на 1500 об/м. Так что это — однозначный миф: из двух вентиляторов эффективнее тот, у которого больше воздушный поток.

Миф третий: прямой контакт медных теплотрубок с крышкой процессора лучше, чем контакт крышки с алюминиевым основанием кулера

Тут все уже не так просто. Во-первых, если мы видим такое основание кулера, то его брать не стоит:


Почему? Ответ прост — отвод тепла будет неэффективен, так как между теплотрубками есть зазоры, и в итоге площадь контакта будет существенно меньше площади крышки процессора. С учетом того, что это башенный кулер и его обычно используют для охлаждения «горячих» Core i7 или Ryzen — мы получим большие температуры, чем при полном контакте основания кулера с крышкой процессора (для скептиков — даже ASUS при переходе от 900ой серии видеокарт Nvidia к 1000ой отказалась от прямого контакта теплотрубок с кристаллом GPU именно по этой причине).

То есть, алюминиевое основание с проходящими через него теплотрубками — лучше? Конструкция выглядит так:

И да и нет. Проблема в том, что место контакта двух металлов — в данном случае меди и алюминия — обладает некоторым термическим сопротивлением. И чтобы снизить это сопротивление, контакт двух металлов должен быть наиболее плотным (медные трубки должны быть полностью окружены алюминием, а еще лучше — впаяны в него). Вот в таком случае и контакт крышки процессора с основанием будет наиболее полным, и теплопередача на стыке двух металлов будет хорошей.

Миф четвертый — шлифовка основания кулера и процессора улучшит теплопередачу между ними

В теории — все верно: чем ровнее поверхности, тем меньше в них зазоров, тем плотнее будет контакт и, значит, тем лучше будет теплопередача. Но вот суть в том, что дома вы ровнее поверхности точно не сделаете, более того — скорее всего из-за того, что местами вы стешите больше, а местами меньше — вы только ухудшите контакт («на глазок» хорошо стесать не получится). Ну и современные кулеры уже отполированы так, что даже на специальной шлифовальной машинке вы вряд ли сделаете полировку лучше. Так что этот миф можно отнести к древним — да, действительно, на заре появления кулеров их полировка оставляла желать лучшего. Но сейчас это не так.

Миф пятый — так как жидкий металл по своим свойствам схож с припоем, его нужно использовать везде, где только можно и нельзя

Да, действительно, теплопроводящие свойства жидкого металла, бывает, на порядок лучше, чем у термопаст, и действительно схожи по эффективности с припоем. Но у него есть несколько важных особенностей: во-первых, он проводит ток. Так что при его намазывании (хотя скорее — втирании) следите за тем, чтобы он не попадал на компоненты платы. Особенно тщательно следите за этим, когда меняете термопасту на ЖМ на кристалле GPU — рядом с ним зачастую находится много мелких компонентов, закорачивание которых может привести к выходу видеокарты из строя:

Так что при использовании ЖМ заизолируйте все ближайшие компоненты платы при помощи того же лака.

И вторая особенность жидкого металла — в его составе есть галлий. Металл примечателен тем, что он разрушает алюминий, так что если у вас подложка кулера именно такая — использовать его нельзя. С медью, никелем, серебром и прочими металлами — проблем нет. Ну и последняя его особенность — не имеет смысла использовать его с воздушным кулером: практика показывает, что замена хорошей термопасты на ЖМ снижает температуру всего на 2-3 градуса. А вот с водяным охлаждением можно добиться и более существенной разницы.

Миф шестой: водяное охлаждение всегда лучше воздушного

В теории — да: вода эффективно отводит тепло от процессора к радиатору, площадь которого у хороших водянок зачастую больше, чем у кулеров. Да и вентиляторов на водянках обычно все же два, а не один, так что воздушный поток также получается большим. Но вот с современными процессорами от Intel, где под крышкой «терможвачка», можно наблюдать интересный эффект: что с кулером они зачастую перегреваются, что с дорогущей водянкой. Тут уже проблема в том, что плохая заводская термопаста под крышкой процессора может отвести от его кристалла всего 130-140 Вт. С учетом того, что тепловыделение топовых 10-ядерных процессоров зачастую приближается и к 200 Вт (особенно при разгоне) — мы получаем перегрев, который не зависит от системы охлаждения, так как проблема с теплоотводом находится еще до нее, под крышкой процессора. Так что водяная система охлаждения далеко не всегда будет лучше воздушной, и поэтому не стоит удивляться, почему это с топовой водянкой Core i9 греется до 100 градусов под нагрузкой.

Читайте также:  Автостудия на салова 70

Миф седьмой: чем больше корпусных кулеров, тем лучше

Достаточно популярное заблуждение: в интернете полно картинок, где на корпус нацеплено 3-4 кулера с попугайной подсветкой. На практике это не только не поможет, но и будет мешать. Проблема в том, что любой корпус — это замкнутое достаточно узкое пространство, и любой кулер будет создавать в нем определенный воздушный поток. И когда кулеров много, да и еще дуют в разные стороны — внутри корпуса будет твориться ветряной ад, и в итоге может получиться так, что теплый воздух не будет толком выводиться. Поэтому лучше всего нацепить только два кулера, но правильно: на передней панели он работают на вдув, на задней — на выдув. Тогда внутри корпуса будет создаваться один четкий воздушный поток:

Причем стоит учитывать то, что воздушный поток кулера на вдув должен быть равен воздушному потоку кулера на выдув. Возникает вопрос — а почему на передней панели кулер на вдув, а на задней — на выдув, а не наоборот? Ответ банален — сзади системника обычно более пыльно, чем спереди. Так что кулер на вдув на задней крышке просто втягивал бы пыль внутрь корпуса, что нехорошо (да-да, причина только в этом, а не в том, что дескать вентилятор процессора крутится именно в эту сторону).

Миф восьмой — при нагрузке лучше выставлять максимальные обороты вентилятора для лучшего охлаждения

В теории опять же все верно: больше обороты > больше воздушный поток > эффективнее отвод тепла от радиатора > ниже температуры процессора. Однако на практике зачастую разница в температуре процессора при максимальных оборотах вентилятора, и при половине от максимальных оборотов — всего несколько градусов. Почему так происходит? Ответ прост: воздух — не самый лучший теплоноситель, и поэтому чем выше воздушный поток — тем меньше от этого прирост. Так что зачастую можно установить скорость вращения вентилятора на 50-70% от максимума, и получить хороший баланс тишины и температуры.

Как видите — мифов достаточно много, так что при сборке ПК будьте аккуратны: бывает так, что, казалось бы, логичное умозаключение может быть в корне неверным.

Идея этого текста родилась у меня в голове после анализа многочисленных писем читателей, а также после общения с читателями же на Комтеке. Здесь мы разберем самые распространенные ошибки, которые (с активной помощью другой компетентной публики) допускает сферический пользователь в вакууме, когда начинает задумываться об эффективности системы охлаждения своего ПК.

Миф первый: чем выше обороты кулера, тем он эффективнее

Вентилятор с огромной скоростью вращения эффектнее (шумнее) своего менее быстрого собрата, но не всегда эффективнее. То есть эффективность кулера не всегда пропорциональна скорости вращения. Поток воздуха вокруг ребер может быть как ламинарным (ровным, без возмущений), так и турбулентным, то есть беспорядочным, вихревым. Режим течения зависит от скорости воздуха: чем она выше, тем выше «турбулентность» потока. Турбулентный поток хорош тем, что, обеспечивая непрерывную ротацию воздуха у поверхности ребра, эффективнее снимает с них тепло. Минус же высокой турбулентности в том, что существенно падает скорость протекания воздуха через радиатор, потоки завихряются, и уже подогретый при предыдущем контакте с ребрами воздух, касаясь поверхности вновь, уже ничего с собой не уносит. Ламинарный же поток принимает энергию хуже, но и течет ровно, быстро утекая за пределы радиатора. Увеличение числа оборотов кулера до огромных значений ведет, конечно, к уменьшению температуры процессора, однако в данном случае цель не опрадывает средства.Гораздо удобнее сконструировать грамотный кулер со средним уровнем турбулентности, который будет охлаждать процессор не хуже неграмотного высокоскоростного и высокотурбулентного собрата. Примеры? Да их предостаточно. Вспомните хотя бы новый боксовый кулер от Intel (www.ferra.ru/online/supply/21615) , скорость вращения вентилятора которого не так высока, а эффективность — очень даже. А все из-за грамотной конструкции, в том числе и конструкции ребер, обеспечивающих «правильный» поток.

Грамотная конструкция ребер.

Иными словами, не всегда имеет смысл гнаться за оборотами. Да и уши свои тоже стоит пожалеть.

Подробнее о ламинарных и турбулентных потоках можно прочесть в нашем материале о проблемах охлаждения, поднимавшихся на IDF в Москве.

Миф второй: шлифовка основания увеличивает эффективность охлаждения

Строго говоря, это не миф. Хорошая и качественная шлифовка действительно улучшит охлаждение, убрав царапины и прочие дефекты, уменьшающие площадь соприкосновения процессора и основания. Однако шлифовать основание надо правильно, иначе вместо улучшения охлаждения мы получим существенное падение эффективности кулера.

Как поступает большинство пользователей, услышавших о полировке основания? Да очень просто — пользователь берет крупную шкурку, и начинает пальцами или каким-то твердым предметом возить ее по основанию. Затем наждачка меняется на более мелкую, до тех пор, пока пользователю не покажется, что уже достаточно. Такой шлифовкой мы действительно уберем мелкие царапины, однако наделаем на основании много гораздо более крупных дефектов. Дело в том, что сила нажатия на инструмент не всегда одинакова, вернее, всегда неодинакова, да и время, потраченное на каждый квадратный сантиметр, различается, и в результате какой-то участок поверхности мы стачиваем сильнее, а какой-то совсем чуть-чуть. Если после такой шлифовки посмотреть на основание вооруженным глазом, то можно увидеть, что оно стало «волнистым».

Коэффициент теплопроводности любой термопасты много ниже оного у любого металла. А теперь подумайте, что сильнее ударит по эффективности охлаждения: царапина глубиной 0,1 мм и общей площадью 1 кв. мм, залитая термопастой, или яма такой же глубины, но площадью уже 1 кв. см? Правильно.

Этому основанию определенно нужна шлифовка.

Так что шлифовать основание надо, но, во-первых, только в самых тяжелых случаях, когда дефектов много, и они легко заметны, а во-вторых, так, чтобы таких «ям» не возникало, то есть или с помощью специальной машинки, или просто используя ровную поверхность, равномерно покрытую наждачкой. Половинный вариант — набор наждачек разной степени крупности — не принесет вам ничего хорошего.

Читайте также:  Ваз 2107 на черных штампах

Миф третий: медный сердечник всегда лучше сплошного алюминиевого основания

В большинстве случаев это действительно так — чем меднее основание, тем эффективнее кулер. Однако, есть варианты, когда сплошное алюминиевое основание намного эффективнее врезанного в него медного сердечника.

Все дело в том, что место соединения двух металлов — алюминия и меди — обладает некоторым термическим сопротивлением. И оно тем больше, чем хуже качество (то есть площадь и плотность) этого соединения. Вопрос о качестве, конечно же, не стоит, когда сердечник толстый, и врезан по всей толщине в алюминиевое основание или оправу с большим натягом. А вот в случае, когда сердечник, например, легко прокручивается в основании, или, несмотря на общую массивность сердечника, площадь соединения очень невелика, сопротивление границы раздела металлов будет очень велико. Настолько, что лучше бы на месте меди было просто сплошное алюминиевое основание — все преимущества меди с ее высоким коэффициентом теплопроводности «съедаются» местом контакта.

Вариант плохого соединения меди и алюминия.

К счастью, таких кулеров с каждым днем становится меньше. И вообще, нынче у произвордителей в моде кулеры с полностью медным основанием, которое будет всегда эффективнее, чем алюминиевое, при условии, конечно, качественного с точки зрения теплообмена крепления к нему ребер.

Миф четвертый: штатная термопаста/термонашлепка заслуживает лишь мгновенной замены ее на КПТ-8

Это далеко не всегда так. Безусловно, хорошая (не «подпольная») КПТ-8 — термопаста очень достойная, и она действительно лучше многих зарубежных паст, а уж прилагаемые к кулерам пасты вообще через одну курят в коридоре. Однако, если к вашему кулеру, скажем, Titan прилагается шприц с серебристой термопастой, не спешите бежать за КПТ-8. Прилагаемая термопаста ничем не хуже КПТ-8, по крайней мере, при тех значениях тепловых потоков, которые мы имеем в стандартном или даже сильно разогнанном ПК. Ну будет температура процессора отличаться от возможной на один градус — вы что, умрете от этого? А процессор? Тоже нет. Так что в подавляющем большинстве случаев в замене штатной термопасты на КПТ-8, АлСил-3 или даже более дорогую пасту «с серебром» нет никакого смысла.

Термопасты и термопрокладки.

Разумеется, если вы купили кулер, о месте рождения которого неизвестно даже ему самому, и в комплект поставки входил невзрачный пакетик с надписью «Silicone compound», вид которого вызывает не доверие, а прямо противоположные эмоции, то термопасту лучше заменить.

Отдельный разговор — термонашлепки. Они бывают разные — в виде очень густых паст, которые по идее должны плавиться при нагревании процессора, и в жидкой фазе заполнять все неровности, или в виде кусочка фольги, наклеенного на основание. Термонашлепку первого типа лучше удалить, и даже не потому, что она неэффективна (иногда ее эффективность довольно высока) — просто при последующем снятии кулера с холодного процессора вы можете оторвать вместе с ним еще и часть кристалла, что вряд ли входит в ваш план по продаже старого камня и замене его на новый.

На старом боксовом кулере от Intel, которым оснащаются Pentium 4 до 3,06 Ггц, на основании наклеен кусочек чего-то черного, напоминающего фольгу. Каких только мнений я не встречал! Говорили даже, что это — просто защитная накладка, а вот под ней-то скрывается настоящая термопаста. Это не так — фольга, покрытая тонким слоем высокоориентированного графита, есть сам интерфейс, а не защита термоинтерфейса, как думают очень многие продавцы и пользователи. Эффективность ее, к сожалению, оставляет желать лучшего (и даже Intel это косвенно признала, укомплектовав следующий кулер для более мощных процессоров обычной термопастой), однако если вы не собираетесь разгонять процессор, сойдет и она. Ничего страшного в ней нет, и свои функции эта фольга выполняет.

Термопрокладка из фольги с высокоориентированным графитом.

То, чем ее заменили.

В рамках этого мифа, пожалуй, стоит развеять еще один, появившийся на свет с легкой руки некоторых сетевых журналистов, и распространившийся поэтому достаточно быстро и хорошо. Все серебристые пасты «с добавлением алюминия или серебра», которые прилагаются к кулерам или продаются на соответствующих рынках, а также «пасты с добавлением цинка», к коим, в частности, относится и КПТ-8, не содержат этих металлов в чистом виде. В них используются оксиды или нитриды соответствующих металлов, которые, в отличие от металлов, являются изоляторами, а не проводниками электрического тока. Термопасты с добавлением чистого серебра существуют, однако ни один производитель в здравом уме не будет комплектовать ей свои кулеры — во-первых, потому, что дорого, а во-вторых, потому что опасно. Да и купить такую пасту достаточно сложно.

Следовательно, пробой нам не грозит, даже если мы покроем «алюминиевой» пастой весь Athlon с его мостиками.

Подробнее о термопастах и термонашлепках можно прочесть в нашем материале (см. www.ferra.ru/online/supply/13736).

Миф пятый: Чем больше в корпусе кулеров, тем лучше охлаждение

Я, будучи в здравом уме и трезвой памяти, заявляю, что прекрасно осознаю все то, что я тут пишу, и понимаю, что буду заплеван за нижеследующее многими моддерами, превратившими свои корпуса в подобие многомоторных винтовых самолетов. Однако все же скажу — бездумная установка кулеров в корпус лишь снижает эффективность охлаждения внутреннего пространства.

Дело в том, что большинство хороших (Обратите внимание — именно хороших! Плохие корпуса дорабатывать нет никакого смысла, горбатого только могила исправит) корпусов допускают установку дополнительных вентиляторов именно в тех местах, в которых допускают, не просто так, а потому, что так надо. Иными словами, если места под вентиляторы есть на передней и задней панели — так это не потому, что на других панелях места не было, а потому, что именно там вентиляторы и должны быть расположены для достижения наибольшей эффективности охлаждения. Разумеется, небольшие подвижки возможны, равно как возможно оснащение этих панелей вентиляторами сверх нормы. Однако большинство пользователей в погоне за прохладой поступает, как правило, иначе — режет блоухоллы там, где это вообще возможно, то есть чаще всего на боковой и верхней стенке. Причем ориентируют эти вентиляторы чаще всего на внос воздуха внутрь корпуса. И этим вносят в задумку производителя существенные коррективы, выражающиеся в дополнительных потоках воздуха, меняющих всю тепловую картину, и заставляющих воздух выходить не там, где надо, и проделывать совсем не тот путь, который нужно.

Читайте также:  Дефлектор капота своими руками

Так видит идеальный корпус фирма Intel.

Запомните — воздух должен поступать в корпус через переднюю его часть, а выходить — через заднюю. Кроме того, число входящих и исходящих вентиляторов, а вернее, их суммарный расход, должно быть хотя бы сопоставимо, иначе получится не картина, а непонятно что — воздух будет выходить совсем не там, где нужно, и совсем не так, как нужно. Боковые вентиляторы допустимы, но только в случае, когда вы понимаете, зачем это делаете. Для того, чтобы понимание наступило, полезно иногда нарисовать на бумаге корпус и все потоки внутри него.

По той же причине нежелательно иметь большое число вентиляционных отверстий в разных частях корпуса. Эти отверстия нужны только тогда, когда основной упор в охлаждении корпуса делается не на вынужденную, а на естественную конвекцию воздуха, то есть вентиляторов в корпусе мало, или их нет совсем. В случае же, когда расходы вентиляторов впереди и сзади сопоставимы и достаточно велики, вентиляционные отверстия не полезны, и даже вредны. Достаточно одного хорошего воздухозаборника перед каждым вентилятором. Кстати, эти воздухозаборники полезно закрывать фильтрами — реже придется пылесосить корпус.

Даже если вы завесите все передние и задние стенки вентиляторами, температура внутри корпуса все равно не упадет ниже температуры окружающей среды, а вот шум и нагрузка на блок питания увеличатся очень сильно. Существует некая критическая масса вентиляторов, выше которой сколько их число не увеличивай, температуры все равно останутся такими же, или опустятся, но на столь малую величину, что вы этого даже не заметите. Для разных корпусов и конфигураций эта масса будет разной, но обычно критическое число вентиляторов невелико, и уж точно намного меньше, чем многие себе представляют — скажем, четыре или пять.

Так что не боритесь с ветряными мельницами, и не делайте ветряную мельницу из своего корпуса. Вместо этого улучшите охлаждение тех точек, которые в этом действительно нуждаются. Например, поставьте вентилятор напротив жесткого диска.

Миф шестой: современные жесткие диски не нуждаются в специальном охлаждении

Миф активно существует благодаря продавцам ПК, не особенно утруждающих себя охлаждением жестких дисков в своих компьютерах. Однако, верен он с точностью до наоборот — как раз современные жесткие диски в этом охлаждении нуждаются намного больше своих древних собратьев. Связано это с тем, что плотность размещения элементов на схемах винчестеров, а также транзисторов в микросхемах, в последние годы существенно возросла, а вот токи, необходимые винчестеру, остались такими же. Соответственно, современный управляющий чип винчестера уже не в состоянии рассеять все выделяемое им тепло самостоятельно просто в силу очень маленькой площади корпуса. Диапазон же температур, в котором винчестер нормально работает, и его срок службы при этом не снижается, достаточно узок. Если в случае с процессором снижение срока службы с десяти лет до пяти не очень критично, то для винчестера этот же параметр намного важнее. Между тем, охлаждению процессора уделяется огромное количество внимания, а вот охлаждению микросхем контроллера винчестера — вообще не уделяется.
Оснащение винчестера своим вентилятором сделает проблему менее острой, хотя справедливости ради надо сказать, что вряд ли снимет ее совсем. Но это уже тема отдельной статьи.

Какой же все таки поставить радиатор? Я думаю каждый из нас задавался таким же вопросом придя на рынок или в магазин запчастей, осматривая огромный выбор радиаторов на любой вкус, удовлетворяющий даже самого извращенного привереды. Хочешь двух рядный, трех рядный, побольше, поменьше, с крупной секцией с мелкой, алюминиевый, медный. Вот именно из какого металла изготовлен радиатор и пойдет речь.

Одни считают, что медь. Это своеобразные староверы, так бы назвали их в XVII веке. Да, если взять не новые автомобили XX века, то тогда повсеместно устанавливались медные радиаторы. Не зависимо от марки и модели, была ли это бюджетная микролитражка или тяжеловесный многотонный грузовик. Но есть и другая армия автовладельцев утверждая что радиаторы изготовленные из алюминия лучше медных. Потому как их устанавливают на новые современные автомобили, на сверхмощные двигатели требующие качественного охлаждения.

И что самое интересное они все правы. И у тех и у других есть свои плюсы и естественно минусы. А теперь небольшой урок физики. Самым отличным показателем, на мой взгляд, являются цифры, а именно коэффициент теплопроводности. Если сказать по простому то это способность вещества передавать тепловую энергию от одного вещества другому. Т.е. у нас имеется ОЖ, радиатор из N-ного металла и окружающая среда. Теоретически чем выше коэффициент тем быстрее радиатор будет забирать тепловую энергию у ОЖ и быстрее отдавать в окружающую среду.

Итак, теплопроводность меди составляет 401 Вт/(м*К), а алюминия — от 202 до 236 Вт/(м*К). Но это в идеальных условиях. Казалось бы медь выиграла в данном споре, да это "+1" за медные радиаторы. Теперь кроме всего необходимо рассмотреть собственно конструкцию самих радиаторов.

Медные трубки в основе радиатора, так же медные ленты воздушного радиатора для передачи полученного тепла в окружающую среду. Крупные ячейки сот радиатора позволяют снизить потери скорости воздушного потока и позволяют прокачать большой объем воздуха за единицу времени. Слишком малая концентрация ленточной части радиатора снижает эффективность теплопередачи и увеличивает концентрацию и силу локального нагрева радиатора.

Я нашел два вида радиаторов в основе которых лежат алюминиевые и стальные трубки. Вот еще не маловажная часть, т.к. коэффициент теплопроводности стали очень мал по сравнению с алюминием, всего лишь 47 Вт/(м*К). И собственно только из-за высокой разности показателей, уже не стоит устанавливать алюминиевые радиаторы со стальными трубками. Хотя они прочнее чистокровных алюмишек и снижают риски протечки от высокого давления, например при заклинившем клапане в крышке расширительного бачка. Высокая концентрация алюминиевых пластин на трубках увеличивает площадь радиатора обдуваемого воздухом тем самым увеличивая его эффективность, но при этом увеличивается сопротивление воздушного потока и снижается объем прокачиваемого воздуха.

Ценовая политика же на рынке сложилась таким образом что медные радиаторы значительно дороже алюминиевых. Из общей картины можно сделать вывод что и те и другие радиаторы по своему хороши. Какой же все таки выбрать? Этот вопрос остается за вами.

Комментировать
2 881 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Автомобили
0 комментариев
No Image Автомобили
0 комментариев
No Image Автомобили
0 комментариев
Adblock
detector