Лабораторная работа № 2
Жидкие диэлектрики
Выполнил ст. группы: ЭПб-151
Емельянов Сергей Владимирович
Малахова Татьяна Федоровна
Цель работы : Ознакомление с жидкими диэлектриками и их применение.
Жидкие диэлектрики
Диэлектрик— вещество (материал), относительно плохо проводящее электрический ток. Жидкие диэлектрики — молекулярные жидкости, удельное электрическое сопротивление которых превышает 10 10 Ом см.Жидкие диэлектрики представляют собой электроизоляционные жидкости, используемые в электрических аппаратах высокого напряжения, а также в блоках электронной аппаратуры.
Общая характеристикажидких диэлектриков.
Жидкими диэлектриками являются насыщенные ароматические, хлорированные и фторированные углеводороды, ненасыщенные парафиновые и вазелиновые масла, кремнийорганические соединения (полиорганосилоксаны), сжиженные газы, дистиллированная вода, расплавы некоторых халькогенидов и др. Для жидких диэлектриков характерна ковалентная связь электронов в молекулах, а между молекулами действуют ван-дер-ваальсовые силы.
Проводимость жидкостей определяется ионизацией молекул и наличием в жидкости примесей. Основными примесями, уменьшающими электрическую прочность, являются микрочастицы, микропузырьки и вода. Очистка диэлектрических жидкостей (дистилляцией, частичной кристаллизацией, адсорбцией, ионным обменом) приводит к уменьшению электропроводности и диэлектрических потерь и возрастанию электрической прочности. Электрическая прочность в значительной степени является технологической характеристикой жидкого диэлектрика и электродов, способов приготовления и эксплуатации изоляционного промежутка. На нее влияют не только те примеси, которые определяют электропроводность, но и форма и материал электродов, длительность импульса, наличие пузырьков.
Наиболее распространенными жидкими диэлектриками, применяемыми в качестве электроизоляционных материалов, являются:
нефтяные масла — трансформаторное, конденсаторное и кабельное;
синтетические жидкие диэлектрики — полихлордифенил (совол, совтол), кремнийорганические и фторорганические;
растительные технические масла (касторовое, льняное, конопляное и тунговое) в электроизоляционной технике применяются ограниченно.
Свойства наиболее применяемых жидких диэлектриков
Растительные масла
К растительным маслам относятся касторовое, тунговое, льняное, конопляное. Растительные масла — слабополярные диэлектрики. Касторовое масло имеет высокую нагревостойкость и используется как пластификатор и для пропитки бумажных конденсаторов. Тунговое, льняное и конопляное масла относятся к «высыхающим» маслам. Высыхание обусловлено не испарением жидкости, а химическим процессом, в основе которого лежит окислительная полимеризация. Используются в качестве пленкообразующих в лаках (в том числе электроизоляционных), эмалях и красках.
Касторовое масло получается из семян клещевины; иногда используется для пропитки бумажных конденсаторов. Плотность касторового масла 0,95-0,97 Мг/м3, температура застывания от минус 10 до минус 180 °С; диэлектрическая постоянная Ɛ равна 4,0 – 4,5 при температуре 200 °С; Епр=15-20 Мв/м. Касторовое масло не растворяется в бензине, но растворяется в этиловом спирте.
Льняное масло золотисто – желтого цвета получается из семян льна. Его плотность 0,93-0,94 Мг/м3, температура застывания – около -200 °С.
Тунговое (древесное) масло получают из семян тунгового дерева, которое разводится на Дальнем Востоке и на Кавказе. Тунговое масло не является пищевым и даже токсично. Плотность тунгового масла — 94 Мг/м 3 , температура застывания — от 0 до минус 50 °С.
По сравнению с льняным маслом тунговое высыхает быстрее. Оно даже в толстом слое высыхает более равномерно и дает водонепроницаемую пленку, чем льняное.
Растительные масла
Используются в качестве пленкообразующих в лаках (в том числе электроизоляционных), эмалях и красках.Высыхающие масла применяются в электропромышленности для изготовления электроизоляционных масляных лаков, лакотканей, для пропитки дерева и для других целей. В последнее время наблюдается тенденция к замене высыхающих масел синтетическими материалами. Невысыхающие масла могут применяться в качестве жидких диэлектриков.
Пробой жидких диэлектриков
Электрическая форма пробоя, развивающаяся за время 10 -5 –10 -8 с, наблюдается в тщательно очищенных жидких диэлектриках и связывается с инжекцией электронов с катода. Епр при этом достигает 10 3 МВ/м.
Капельки воды (полярной жидкости) в техническом масле под влиянием электрического поля поляризуются, вытягиваются в эллипсы, притягиваются друг другу разноименно заряженными концами, образуя цепочки «капель» с повышенной проводимостью, по которым происходит электрический пробой.
В технически чистых жидких диэлектриках пробой носит тепловой характер. Энергия, выделяющаяся в ионизирующихся пузырьках газа, приводит к перегреву жидкости, что может послужить причинойзакипания капелек влаги (локальный перегрев) и возникновению газового канала между электродами.
Сажа и обрывки волокон в жидкости приводят к искажению электрического поля в жидкости, понижая электрическую прочность жидкого диэлектрика.
На высоких частотах происходит разогрев жидкости за счет релаксационных потерь и наблюдается термическое разрушение жидкости.
На электрический пробой жидких диэлектриков влияют многие факторы, к числу которых относятся:
– дегазация жидкости и электродов;
– длительность воздействия напряжения;
– скорость возрастания напряжения и его частота;
– температура, давление и др.
Пробивное напряжение в неочищенных жидкостях определяется действующим значением напряжения (тепловой характер пробоя), в очищенных – амплитудным (электрическая форма пробоя) значением напряжения.
Более сильное влияние как жидких, так и газообразных примесей и загрязнений сказывается на низких частотах. Увеличение электрической прочности трансформаторного масла происходит при фильтрации и осушке (при частоте 50 Гц — втрое, на частоте 10 5 Гц — только на 30%).
Для многих жидкостей в зависимости пробивного напряжения от температуры имеется максимум при температурах 30–80 о С, высота которого уменьшается с ростом частоты (в пределах 0.4–12 МГц). Кривая тангенса угла диэлектрических потерь при температуре максимума проходит через минимум.
Увеличение давления от 60 до 800 мм.рт.ст. увеличивает пробивное напряжение на 200–300%. Добавка к жидкости частиц вещества с диэлектрической проницаемостью большей, чем у жидкости, приводит к росту тока в несколько раз.
Вывод
Я ознакомился в данной лабораторной работе с жидкими диэлектриками. В ходе работы была рассмотрена общая характеристика жидких диэлектриков, свойства наиболее применяемых жидких диэлектриков, в отдельности рассматривались такие диэлектрики как : нефтяные электроизоляционные масла, синтетические жидкие диэлектрики, растительные масла. Были изучены применения данных диэлектриков. В завершении работы изучался пробой у жидких диэлектриков.
Лабораторная работа № 2
Жидкие диэлектрики
Выполнил ст. группы: ЭПб-151
Емельянов Сергей Владимирович
Малахова Татьяна Федоровна
Цель работы : Ознакомление с жидкими диэлектриками и их применение.
Жидкие диэлектрики
Диэлектрик— вещество (материал), относительно плохо проводящее электрический ток. Жидкие диэлектрики — молекулярные жидкости, удельное электрическое сопротивление которых превышает 10 10 Ом см.Жидкие диэлектрики представляют собой электроизоляционные жидкости, используемые в электрических аппаратах высокого напряжения, а также в блоках электронной аппаратуры.
Общая характеристикажидких диэлектриков.
Жидкими диэлектриками являются насыщенные ароматические, хлорированные и фторированные углеводороды, ненасыщенные парафиновые и вазелиновые масла, кремнийорганические соединения (полиорганосилоксаны), сжиженные газы, дистиллированная вода, расплавы некоторых халькогенидов и др. Для жидких диэлектриков характерна ковалентная связь электронов в молекулах, а между молекулами действуют ван-дер-ваальсовые силы.
Проводимость жидкостей определяется ионизацией молекул и наличием в жидкости примесей. Основными примесями, уменьшающими электрическую прочность, являются микрочастицы, микропузырьки и вода. Очистка диэлектрических жидкостей (дистилляцией, частичной кристаллизацией, адсорбцией, ионным обменом) приводит к уменьшению электропроводности и диэлектрических потерь и возрастанию электрической прочности. Электрическая прочность в значительной степени является технологической характеристикой жидкого диэлектрика и электродов, способов приготовления и эксплуатации изоляционного промежутка. На нее влияют не только те примеси, которые определяют электропроводность, но и форма и материал электродов, длительность импульса, наличие пузырьков.
Наиболее распространенными жидкими диэлектриками, применяемыми в качестве электроизоляционных материалов, являются:
нефтяные масла — трансформаторное, конденсаторное и кабельное;
синтетические жидкие диэлектрики — полихлордифенил (совол, совтол), кремнийорганические и фторорганические;
растительные технические масла (касторовое, льняное, конопляное и тунговое) в электроизоляционной технике применяются ограниченно.
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ – конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой.
Проводники
К проводникам относятся все металлы и их сплавы, а также электротехнический уголь(каменный уголь, графит, сажа, смола и т.д.)
К жидким проводникам относятся:вода, раствор солей, кислот и щелочей.
К газообразным относятся ионизированные газы.
Электрический ток в твердых проводниках-это направленное движение свободных электронов под действием ЭДС.
ЭДС-электронно-движущая сила.
Свойства проводников:
- Электрические
- Удельное сопротивление веществ от которого зависит электропроводимость
- Сверхпроводимость-это свойство некоторых материалов при температуре равной 101(-273) проводить эл.ток без препятствий, т.е. удельное сопротивление этих материалов равно нулю
- Физические
- плотность
- температура плавления
- Механические
- Прочность на изгиб, растяжение и т.д., а также способность обрабатываться на станках
- Химические
- Свойства взаимодействовать с окружающей или противостоять коррозии
- Свойства соединятся при помощи пайки, сварки
Диэлектрики
Не пропускают электрический ток.Диэлектрики обладают высоким удельным сопротивлением.Используются для защиты проводника от влаги, механических повреждений, пыли.
Диэлектрики бывают
- твердые-все неметаллы;
- жидкие-масла, синтетические жидкости СОВОЛ, СОВТОЛ
- газообразные-все газы:воздух, кислород, азот и т.д.
Свойства диэлектриков:
- Электрические свойства
- Электрический пробой-устанавление большого тока, под действием высокого электрического напряжения к электроиоляционному материалу определенной толщины.
- Электрическая прочность-это величина, равная напряжению, при котором может быть пробит электроизоляционному материал толщиной в единицу длины.
- Физико-химические свойства
- Нагревостойкость-это способность диэлектрика длительно выдерживать заданную рабочую температуру без заметного изменения своих электроизоляционных качеств.
- Холодостойкость-способность материала переносить резкие перепады температуры, от +120, до – 120
- Смачиваемость-способность материала отторгать влагу, испытания проводятся в климатических камерах, типа ELKA, где изделие подвергается увлажнению, создается ТУМАН и мгновенный перепад температуры-СУШКА, и так несколько циклов!
- Химические
- Должны противостоять активной(агрессивной) среде
- Способность склеиваться
- Растворение в лаках и растворителях, склеиваться
- Механические
- Защита металлических проводников от коррозии
- Радиационная стойкость
- Вязкость(для жидких диэлектриков)
- Вязкость-время истечения жидкости из сосуда, имеющего определенную форму и отверстие
- Предел прочности, твердости
- Обработка инструментом
Масло не может закоротить-оно диэлектрик.
Это если масло свежее, а если на нём проехали тысяч 7 км., то не известно какой состав у него будет.
что ну нафик? дизтопливо тоже не проводит
Ну если ты так считаешь, то опусти фазу в масло, потом встань босиком на бетонный пол и сунь руку в масло:pop::mrgreen:
— Добавлено чуть позже —
И в трансформаторных будках масло залито не просто так.
Скажу по-секрету оно туда залито не в качестве диэлектрика:-$
не в качестве диэлектрика
этоя и сам в курсе.
— Добавлено чуть позже —
Ну если ты так считаешь,
я нет, но вверху товарищ – да.:mrgreen: я просто знаю, что в дизель сам лампочку включал и сувал полностью – все окей. и отец у меня проработал в этой сфере – про дизеля как бы не наслышан. если не прав – пускай буду не прав – на нобелевскую не претендую.